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Executive Summary

The aim of the ECODE experimental research project is t@date a new Internet
architectural component realized by means of a machine leacongponent. This
deliverable, belonging to WP3 (Cognitive network and system experinmnias part of a
series of 3 deliverables — one per technical objectives (T@¢fased in the ECODE project
technical annex. It aims at describing the feasibility, benafid applicability of introducing
machine learning techniques to improve the scalability and the quitie dnternet routing
system that is based on Border Gateway Protocol (BGP). Mordisalci this deliverable
addresses the implementation, development and first experimeraspedfin the framework
of TO3 related to this use case. We are interested im@nappropriate machine learning
technique for path exploration sequences detection and identificedi as to mitigate its
effects. By mitigation, we mean here enforcing the suppression cécgud sequences of
BGP routing update messages that are detrimental to the roystegnsconvergence (delays,
and transient instabilities).

After having formalized the fundamental cause deteriorating the rosgstgm quality, i.e.,
uninformed path exploration, the machine learning techniques used and expedor this
use case are specified. In particular, we focus on two technitipgedecision trees and the
hidden Markov model (HMM). A decision tree is a decision support wsilsy a tree-like
graph of decisions. HMM is a statistical model in which the aydteing modelled is an
embedded stochastic process with an underlying Markov process ti@tobservable (it is
hidden) but can only be observed through another set of stochastic prolcaspesduce the
sequence of observations. Initial performance evaluation resulteesé ttechniques are
detailed. At this stage, evaluation of the proposed machine learnirigebasperformed by
means of off-line experiments. These experiments have been condoictezhlistic AS
topologies, following several properties of today's Internet topologh sschierarchical
structure, power-law degree distribution, strong clusteringedlsas a constant average path
length. Further experiments are ongoing to refine these inggallts and future work will
consist in improving the learning model specified in this document.

Based on these results and acquired experience in processing/ BGATE messages, we
describe how we currently consider the introduction of the mechanisralved in this use
case into the ECODE common architecture as detailed in PadbeeD2.1. In particular, we
show how the functionalities of this use case are split amongaiénB Engine (RE) and the
Machine Learning Engine (MLE) of the architecture, and which ngessxchanges are
necessary among these components.
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1. Acronyms

AS
BGP
CRF
CPU
eBGP
FN
FP
HMM
iBGP
P
ISP
TN
TP
T1
T2
T3

Autonomous System

Border Gateway Protocol
Conditional Random Field
Central Processing Unit

External Border Gateway Protocol
False Negative

False Positive

Hidden Markov Model

Internal Border Gateway Protocol
Internet Protocol

Internet Service Provider

True Negative

True Positive

Tier-1

Tier-2

Tier-3
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2. Introduction
2.1 Scope of the Document

This document describes a proposal to reduce the gEEPexploration process duration
using machine learning technique. The following describes the path ekpigradblem and
the proposed solution.

The Border Gateway Protocol (BGP) [4] is a path vector routing protocol used to maintain
connectivity among the collection of independently administArgonomous Systems (ASes)

in the Internet. Thanks to BGRternet Service Providers (ISPs) are able to connect to each
other and end-users can connect to more than one ISP. The primaryrfurici BGP router

is to exchange network reachability information with other BGP rsufemong others, this
information includes a list of ASes that the reachability infaiomagoes across. This list
allows routers to prune routing loops while some policies at the AS level can beednfor

However, the slow convergence problem, inherent to path vector protocslsshban
significant impact on the performance of BGP [5]. In response tto fadures or routing
policy changes, BGP routers may try several transient paths Isefecting a new best path
or declaring a destination as unreachable. This process, Batleexploration, can occur due
to topology changes, hardware failure, and new routers or sessions deplodsengession
failures due to equipment failures, maintenance or due to congestitwe physical links can
lead to routing changes. Finally, it can also be due to changes ingrqudlicies after
reconfiguration of preferences or route filters, or when policies fferdnt ASes are
conflicting.

Routers mainly exchange information through BGP UPDATE messages Wjivies
information about a specific route in the network. BGP routers useirttiemation to
construct the graph describing the relationships among all knows. ABeupdate message
will advertise feasible routes sharing common path attributes,widhdraw multiples
unfeasible routes. Note that each UPDATE message can contain dvatiisement and
withdraws.

Among all information contained in a router announcement, the AS-Pathkieen interest
for us. It is a simple vector of ASes defining in BGP the patld tsgoin a prefix. In this
document, we denote an AS-Path as BA.... A, Aj, where A is the origin AS to which
belongs and Athe local BGP routed is the destination prefix, announced by,AS

Let us consider the topology in Fig. 2.1 and the following events:aASounces a path to
destinationd, this announcement is received at its neighbours, and propagated hop by hop.
Finally, when the network converges, Aows three paths to reach i.e., [3,2,1,0],
[4,2,1,0], and [7,6,1,0] (preferred in that order).

Now, let us consider what happens if the link between &® AS fails, makingd
unreachable at AS This failure triggers the following sequence of events. Aé&nhds
withdrawals to ASand AS. In turn, each of them sends withdrawals to their own neighbours.
Eventually, AS receive withdrawals from each of ARS,, and AS (in some order). Let us
suppose the first one send from,AS8S; then removes the path [3,2,1,0], selects [4,2,1,0] as
the best path and sends it to its (other) neighbours. However, ifithérawal from AS
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arrives next; then this best route is invalidated and s&®cts (and announces) [7,6,1,0].
Finally, after AS receives the withdrawal from ASt invalidates the path announced earlier
and sends a withdrawal.
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Fig. 2.1: BGP and path exploration. Solid/dashed linesrepresent eBGP/iBGP sessions

This cycle of selecting and propagating (invalid) paths is callecp#tie exploration. The
cycle stops after all the obsolete routes have been explored and invalidated.

In this document, we investigate machine learning techniquesimgjaw reduce the BGP
convergence time due to path exploration. In particular, we focus on thoidaes: the
decision trees [12] and thehidden Markov model (HMM) [13]. A decision tree is a decision
support tools using a tree-like graph of decisions while an HMM sgatstical model in
which the system being modelled is assumed to be a Markov process with unobserved state.

2.2 Structure of the Document

The remainder of this document is organized as follows: Sectiprodides a formal model
for the Path Exploration problem; Section 4 investigates the malg@ngng techniques for
detecting Path Exploration and decreasing the BGP convergence tirtien Seevaluates the
performance of the techniques described earlier; Section Glssthhe introduction of the
specified functional components into the ECODE common architecsirgvell as the
interfaces and information exchanges between these componentg,; 8eation 7 concludes
this deliverable.

Deliverable 3.6 Page 7 of 34



FP7-ICT-2007-2 — ECODE Project (223936)

3. Formalization of the Path Exploration Problem

In Border Gateway Protocol (BGP) [4], the Internet inter-domagmiAS (autonomous
system) routing protocol, a route is defined as a unit of informdhan pairs a set of
destinations (reachability information) with the attributesaopath to these destinations.
Routes are advertised between BGP routers in Update messagastukthgath to this set of
destinations is the information reported in the AS_Path attrthateenumerates the sequence
of Autonomous Systems (AS) numbers that the reachability infaymbgs traversed through
BGP Update message. This information is sufficient for construaingraph of AS
connectivity (AS routing topology), from which routing loops may be dedeatel avoided,
and, at the AS level, some policy decisions may be enforced.

BGP is a policy-based shortest AS_Path vector routing protocol provatipgavoidance by
detection, using the AS_Path information includes in the BGP updatagessd his property
of exchanging vectors of ASs (or AS_path) that prevent routing loops ésmi$o the path
exploration phenomenon that is the root cause of the observed delays icoB@gence
time [8] [9]. In response to a topological change (e.g. failure)pmliay change (resulting in
the advertisement or withdrawal of a given prefix associated toewiopsly selected
AS_Path), path exploration is characterized by a sequence closghjed in time of
advertisements of the same prefix with a longer AS_Path (oraeftfAS_Path of the same
length) followed either by a withdrawal for the same prefix (raatthe destination prefix is
declared unfeasible) or by stabilizing to a newly preferr&d Path for the same prefix. The
example depicted in Fig.3.1 (where A indicates an advertisement, awithdrawal) shows
an example of BGP slow convergence due to uninformed path explorationthidbtihe
resulting effect on convergence time is theoretically: upper bo@H and lower bound =
Q[(N-3) x MRAI timer] where N is the number of AS. Neverthelem practice (due to the
fact the Internet is not a complete graph), the convergence timbdecastimated by the
formula (Max_AS-Path - Min_AS-Path) x Minimum Route Advertisemetgrval (MRAI)
time interval.

Fig.3.1: Example of Path Exploration event

The AS sequences included in the AS_Path attribute (or simply A%)rRd BGP UPDATE
messages towards the same destination prefix are correlateghaae. sTopological
correlation(s) in terms of ASs between different AS_Paths thiver same destination prefix
result from the meshedness of the Internet AS topology. That agyatic topology, e.g., a
tree, does not exhibit path exploration, as there is only ondleasith to each destination.
However, exchange of BGP UPDATE messages is spatially uncoordthated: there is no
sequence number indicating to which instance of the topology the curreetlyA$ Path
corresponds to. Uncoordinated BGP UPDATE message exchange cougieddpdlogical
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correlations between AS_Paths, results in a transient phase dunioy ®ach AS_Path
towards the same destination is explored upon topological change.

Path exploration phenomenon can occur both when a prefix is first addeatisl when a
prefix is withdrawn:

- At prefix advertisement time: resulting from the differentiabgagation/processing
delay across the AS topology that may result into suboptimal seleatitinthe
optimal path is being received.

- At prefix withdrawn time: upon prefix withdrawal from a given BGRepédransient
selection by the local BGP speaker of a previously less préfé®path (learned
from another BGP peer in a previously received route update anmoemgethat
substitutes to the previously received and selected AS-path feathe prefix. This
selection results in turn in a BGP UPDATE announcement for tleéikgo its BGP
peers. If this replacement path is itself subsequently withdrawlgdheBGP speaker
will again select another route previously received from @mifit peer, if one exists.
Hence, this process continues until no other transient path (usualhcrefsing
length) in between the BGP router originating the BGP Updateagessd the local
BGP router exist, i.e., is feasible for the same destination prefix.

In both cases, for a given address prefix, the dependency between the PAS Pat
announced/withdrawn at time t(i) for that prefix and the newly ssediand thus
subsequently announced) AS_Path for the same prefix at some time jt@é+p, results
potentially in a transient exploration of all the intermediatihgaEach step is characterized
by the exploration of all intermediate AS_Paths (usually of inarga&5_Path length) until
reaching next best preferred AS_Path. This transient path exploresiolts in delaying the
BGP routing protocol convergence. Intermediate states existenlce i® the cycles in the
topology (between the failure and the local BGP speaker). Cycldsngth n, G, are
eliminated by the BGP protocol (loop avoidance mechanism) but IG&BI $peaker retains
the sequence toward certain AS even if it has already an AS dPtiat tAS. If the latter is
the seed of the path exploration phenomenon the local AS will explbstates from &€
(Min_AS-Path + 1) to €1 (Max_AS-Path). It is important to emphasize that in the example
shown in Fig.3.1, exploring all intermediate state is “uselesshensense that the address
prefix D is unreachable. Hence, by directly detecting such event Routen Hirectly
withdraw its route to prefix D after receiving the first BBPDATE message from Router_2
(indicating the withdrawal of its route to D).

In this context, we are interested in finding a technique for path etiglorsequences
detection so as to enforce suppression of sequences of inter-doGRiroBting updates that
are detrimental to the routing system convergence. Formally, thetiobjes to decrease the
local BGP convergence time form (Max_AS-Path - Min_AS-Path) x MiRAe interval to a
probabilistic time (being the sum of the detection and the altebeste AS-path selection
time).
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4. Machine Learning Techniques to Detect and
Mitigate Path Exploration

4.1. Decision Trees

The problem we are facing is the following: given a sequence of BEHPATE messages,
we want to predict in advance the outcome. A sequence can eitheitler@dnew best path or
with a withdrawal. This is thus a binary classification peatl Having information about the
outcome of the path exploration process will then allow one to improveltial BGP
convergence speed.

The model we develop is the entity in charge of predicting the outobmeath exploration
process. This model needs to fulfil two major constraints: @dseto be efficient and
compliant with real-time constraints. Indeed, routers need to qakek decisions about
whether aborting or continue the path exploration process. Also, rouggrdhave limited
CPU and memory resources.

Several assumptions must be defined in order to be able to define such a nusielypre
* A sequence of UPDATE messages related to a single prefix can be isolated.
» There exists @ath exploration detector able to detect the beginning and the end of a
path exploration process, based on BGP UPDATE messages.

The selected learning model is a tree-based learning. Ithesatour constraints as the
complexity of the tree traversal is logarithmic to the number of odéhe tree and the size
of the tree depends on the number of rules contained in the treehd¥e © base our
learning on received BGP UPDATE messages, which means the sigpeofised technique
to build the tree.

This section is decomposed as follows. Section 4.1.1 describes an wwveiie supervised
learning technique and details the algorithm used to build the treesiddetrees, support
tools using a tree-like graph of decisions, are detailed in Settloh. Next, we describe in
Section 4.1.3, the selected the tree building algorithm: C4.5 [3].08e4tll.4 defines the
measurements, i.e., the parameters used to describe thentredefines the difference
between a path exploration process ending with a withdrawal and anr@ement. Finally,
Section 4.1.5 provides an application to a real example of a path exploration process.

4.1.1. Supervised Learning

The supervised learning algorithm works as follows: given a s@os$ible outputs, the
algorithm generates a function that maps any input to one of the outpistsndy correspond
either to a classification problem where the inputs (typicalbtors, but not necessarily) are
mapped to one of several classes, or to a regression problem tiwaewsulting function
maps this time input to a continuous domain.

The data is called thinput of the algorithm, while the prediction, i.e., the result of the
algorithm application, is called thautput. The learning process uses several input-output
pairs as validnstances of the function, calledraining sample, and should return a functidn

of the inputs that approximatesbest the output. Thid can be used to predict the output for
new inputs, as well as to understand the relationship between input and output.

Deliverable 3.6 Page 10 of 34



FP7-ICT-2007-2 — ECODE Project (223936)

When the output is symbolic, the supervised learning is a clasgficproblem, while a
numerical output refers to a regression problem. Being able tordeéewhether people will
appreciate the time spend in a holiday centre, function of the tsnan example of
classification problem. We have, for example, the following instances:

Sky Temperature | Humidity Wind Water For ecast Enjoy?
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cold Change Yes

We may want to predict whether, for some new weather, people will enjoy the time

Sky Temperature | Humidity Wind Water For ecast Enjoy?
Sunny Cold Normal Strong Warm Same ?
Rainy Warm Normal Strong Warm Same ?

We could have instead sunlight, air and water temperature, humiditg, and forecast
change measures, that would allow to predict which percentage ofgautisnjoy the time,
in which case we would face a regression problem. The predictioe gpatd not be limited
to a set of symbolic values but would be of infinite size.

The functionh will be restricted by a hypothesis spaddedefining a family of candidate
models. We can takEl, e.g., as the set of all linear functions on the inputs, or quadratic
functions, or some very complex functions on the inputs.

A learning phase allows one to determine the best parameters for the functionsvéess
do not mean that we search for the function that fits the la@sinty sample. There comes the
test set, which is a subset of the data set (for example 388d)to estimate the classification
performance of a model obtained on the rest of the data set (the 70% left). The gperéoain
a model can be expressed in terms of error rate, which is thenpmge of incorrectly
classified instances in the data set. Several other measusewan be used as well. The
confusion matrix reports predicted class facing the actuas$,céss shown in Table 4.1. A
classification algorithm will be the best when its normalizethfusion matrix tends to
identity matrix. In a normalized confusion matrix, is composed of emerhicm; = cmy; / N;
wherecm, the elements of the confusion matrix addhe number of element from the true
classi.

Actual Class
X Y
Predicted Class X True Positive (TP) False Positive (FP)
Y False Negative (FN) True Negative (TN)

Table 4.1: Confusion matrix in which each column representsthe number of occurrences of areal class,
while each row representsthe number of occurrences of the estimated class. Thistable assumesthat only
two classes are used, whileit could be build for any finite number of classes.
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Alternative performance measurements are:

+
« Correct Classification Rate = 1 - error rate—= TP+TN :
TP+TN + FP+ FN

We observe that this measure can be very high as soon as orstrolagly dominates
among samples. Indeed, the dominated class would not visibly influenceséseine
in case of misclassification.

* TP Rate = sensitivity i
TP +FN

* Precision = Positive Predictive Value—=-L
TP+FP

* TN Rate = Specificity = 1 - FP Rate——l
FP+TN

We say that some modeVerfits the data if the performance obtained on the learning set is
almost maximal, while worst on the test set. Overfitting inégdhat the model is too close
to the training set, and cannot be generalized to any input.

g
Fig. 4.1: Overfitting in supervised learning

Fig. 4.1 shows an example of overfitting in supervised learning. Thengyagrror is plain
line and the validation error (test set error) is the dashedTliveeoverfitting occurs when the
training error decrease while the test set error incrediss, the vertical dotted line on Fig.
4.1. This point is the optimal complexity of the model.

When not enough data is available to extract a test set, wiefalskcross validation. The
data set is partitioned intosubsets. For each subset, the model is learnt on data not edntain
in the subset, while the error rate is calculated on the d#te slubset. The mean error rate is
over thek subsets. A particular case of cross validation is viheguals the data size. This is
calledleave-one-out cross validation.

Several supervised learning algorithms exist. However, we only foctilseodecision tree
algorithm that is the one used to resolve the path exploration problem.
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4.1.2 Decision Tree

Decision trees are decision support tools using a tree-like graph siotedil2]. An example
for the weather problem introduced in Section 4.1.1 could be the following:

[ Outlook 1. if Outlook is Sunny and Humidity is High then Enjoy is No
Sunny—" 2. if Outlook is Sunny and Humidity is Normal then Enjoy is Yes
-""6vercast ) . .
Yes 3. if Outlook is Overcast then Enjoy is Yes
High / \ Normal Strong / I\-\Weak 4. if Outlook is Rain and Wind is Strong then Enjoy is No
I ! \
No Yes No Yes 5. if Outlook is Rain and Wind is Weak then Enjoy is Yes

Fig. 4.2: Decision tree and equivalent set of rulesdirectly translated from

This tree verifies several properties:

» Each internal node tests an attribute

» Each branch corresponds to an attribute value

» Each leaf node assigns a classification

» Each path from root to leaf represents a conjunction of attribute values

* The whole tree represents a disjunction of conjunctions
The tree classification for a previously unseen example is autshred following the path
corresponding to observed attribute values.

Fig. 4.2 shows an example of rules derivation from a decision treseinkieresting to notice
that those rules (and therefore the decision tree) offer good huesdability and
understanding properties thanks to their simplicity.

Trees are built iteratively. The best-known decision tree budtigrithms are ID3 [2] and
C4.5 [3]. The next section focuses on the C.4.5 algorithm as it is the one we selected.

4.1.3 C.4.5 Algorithm

The ID3 algorithm, introduced by Quinlan [2], works as follows: for each ,nthae best
decision attribute is chosen to maximize the expected reduction in entropy aitey sorthis
attribute, also called th&ain. The C4.5 algorithm [3], also introduced by Quinlan, is an
improvement of the ID3 algorithm using the information entropy. Compard®3, C4.5
introduces two new goals: the avoidance of overfitting to the datahanishcorporation of
continuous-valued attributes.

On the first side, C4.5 uses a validation set distinct from rdnaing set used to detect
overfitting. When increasing the tree depth, if the classificatiofoppeance increases on the
training set and decreases on the validation set, the hypothesis biing bverfitting the
training data set. The growth is stopped when the data split istaittically significant.
Post-pruning is applied on the whole tree to remove sub-trees whose remayaisve
validation set accuracy. The post-pruning idea is to infer theaeeell as possible, convert
the tree to an equivalent set of rules, and then prune each rule dyingrany preconditions
that result in improving its estimated accuraénd finally, sort final rules by their estimated
accuracy and consider them in this sequence when classifying.

Regarding continuous-valued attributes, C4.5 selects candidate theeshidway between
instances with distinct classifications. For example, letonsider whether a player will want
to play tennis depending on the temperature. We have the following data:
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Temperature 5 9 17 24 29 35

Play tennis? No No Yes Yes Yes No

In this case, candidate thresholds are 13 (between 9 and 17) and 3&(b28vand 35). In
the first case, the entropy gain will Be€l887 and in the later cas@0290. C4.5 will then
choose to split around value 13: all temperatures lower than 13 and those at kdast Egju

4.1.4 Measurements

This section describes the measurements that are used to buildhdtiel. Those

measurements allow us to abstract from the UPDATE messsemsences previously
obtained per prefix, and this way to get rid of any reference to Ixgsednd AS numbers.
Those measurements lead to build a decision tree to predict, withaoouracy, the binary
outcomes of a path exploration process, i.e. it ends with a new path or a withdrawal.

We define five different measurements split into three diffiereategories.Intensity
measurements aim at detecting bursts of activity. They therefore include a tamponent in
order to adapt differently their values depending on the occurrencerimgice events they
are looking at in received UPDATE messag€ategorical measurements define several
categories in which received UPDATE messages are classifleunting measurements are
numerical values taken from samples. In our model, those measseadapt their values
depending on BGP UDPATE messages types and attributes. Inrthmder of this section,
we deeply discuss each of those measurements.

The Intensity measurements aim at detecting bursts of activity.mieasurements follow
exponentially weighted sums, meaning that, whenever a new UPDATE geessa/es, a
measure takes a value according to the arrived UPDATE geessal the previous value of
this measure, multiplied by some decreasing exponential. Given thdPBWTE message

and any positive functioh of the new UPDATE message to be defined depending on the
measure itself, intensity measures are updated as follows:

Qn = f(U) + Qna 2™

The new value of the measureméntis thus function of its previous val@g., with Q..= 0
whenn =0. Those measurements aim at detecting bursts of activity, thepeleerto contain
a temporal componenttt is the time elapsed since last received updiiie the decay factor,
determining the half-life of the data used.

We define two intensity measurements:

* BGP update arrival frequency (M1), wheref(u) = 1.

*  Number of new ASpaths (M2), wheref(u) = N, N is an indicator set td if the
UPDATE message contains an AS-path not recently obsedatierwise. It intends
to capture the variation in the number of AS-paths. Upon link/routdurdai
occurrence, BGP experiences slow convergence problem. During this phd2e, BG
routers may receive a number of UPDATE messages with aopstyiunseen AS-
Path, or seldom seen.

The Categorical measurements are based on the sampled messHgeui also on the
previous ones (from the same update sequence).
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We define two categorical measurements:

* BGP UPDATE type (M3), the idea is to classify the message into eight possible types.
The measure is extracted from the decision tree depicted.id Bibased on previous
messages. Each leaf of the tree represents a class (valuést&@n

» ASpath occurrence frequency (M4), this measure intends to capture whether an AS-
path is frequently observed or not. As AS-path diversity tends tedaserduring the
path exploration process.

BGP Update

Withdrawal Announcement

/

Follow Announcement | Follow Withdrawal |
Same AS-path Different AS-path
e a e
| Different MED | | Other difference | |Same AS-path Iengthl |Longer AS-path

| Shorter AS-path I

Figure 4.3.: BGP update type measur e classification tree

We consider a single Counting measurement:
* ASpath difference (M5), this measure intends to measure the difference between the
AS-path received with the previous ones. The difference is ctddulasing the
Levenshtein distance [6].

The Levenshtein distance L returns the minimum number of operations needed to transform
one vector into another. The possible operations are insertion, detatismbstitution of a
single element in the vector. For example:

L([34, 21, 19, 42],[78, 34, 15, 19]) = 3.

Because we need:

One addition: [34, 21, 19, 42] = [78, 34, 21, 19, 42].
One deletion: [78, 34, 21, 19, 42} [78, 34, 21, 19].
One substitution: [78, 34, 21, 19] = [78, 34, 15, 19].

The most stable AS-path is the one shared by most messagies WPDATE message
sequence. It is the one with the mAStpath occurrence frequency.

4.1.5. Application to a Real Example

Table 4.2 gives an example of a path exploration process (chronologicalhed)rd€he
topology that generated this sequence is represented in Fig. 4.4.00ek works on a per
prefix basis, therefore the sequence always ends either with an announcenveititdnaavn.
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Timestamp Type AS-path
1023 Announcement (13,11, 0, 58]
3537 Announcement [13, 0, 58]
360029 Announcement [13,1,0,58]
362509 Announcement [13, 18, 16, 0, 58]
365114 Announcement [13, 11, 14,1, 0, 58]
367542 Announcement [13, 28, 15, 1, 12, 0, 58]
370225 Announcement [13, 14, 11,10, 15,1, 12, 0, 58]
370932 Withdrawal
378682 Announcement [13, 16, 24, 26, 19, 11, 10, 15, 1, 12, 0, 58]
379157 Withdrawal

Table4.2: UPDATE messages received by an atomic AS part of a 30-Ases-clique topology for which a
prefix isannounced befor e being withdrawn.

Data from Table 4.2 is obtained upon simulation of a prefix announcehemtvithdrawn in

the topology represented in Fig. 4.4. The table represents the wholexphdtation process
for a single prefix, showing the different needed parameters. mestamp is the time at
which the BGP UPDATE message has been received. The type iG#dJBDATE type,

whether an announcement or a withdrawal. The AS-Path is, as explane, befvector of

ASes.

B3

LT} l | an
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¥ 27
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L REL ] 12 W
14 17 18 - 45
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L. .=
Bt 16
— ' 15— o
55— L 14 5
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Figure4.4: A 30-ASes-clique topology (theor etical topology).

The first step is the pre-processing. This is a direct apiplicaf measurements to UPDATE
message sequence. For example, the first message of the UPDA3$ages sequence
corresponds to the first row measurements. The global table must then te store
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Table 4.3 is the pre-processing result obtained with the update messages of Table 4.2.

M1 (r=0.01) | M1 (r=0.5) | M2 (r=0.0333) M3 M4 M5
10 10 10 0 10 0
1,84008E+11 1,00016E+11 1,55974E+11 7 5 0
1E+11 10 10 6 5 1
1,84206E+11 1,00019E+11] 15641536319 6 5 2
2,53775E+11 1,00012E+11 1,85733E+11 6 | 3333333333] 2
3,14466E+11 1,00022E+11 2,06047E+11 6 25 0
3,61101E+11 10000915754 2,10921E+11 6 2 3
4,43831E+11 1,08628E+11 1,79163E+11 1 166666666667 8
3,5937E+11 10 1,29948E+11 0 2 0
4,4773E+11] 1,19278E+11 1,16454E+11 1 4 0

Table4.3: Measurementsbased on the sequence of UPDATE messages of Table4.2. The pre-processing
permitted to abstract from any AS number or prefix. Theresult isnow ready for machinelearning.

We cannot consider vectors of measurements as input in the masduined process. We
still have to extract samples from them. The objective ofdhening is to be able to predict
whether a sequence of update messages will end either in an annaun@emgithdrawal.
When we have enough data samples, the C4.5 algorithm is executed toegandgaision
tree, as described in Section 4.1.3.

Considering the measurements related to the last update of a sstuapply the machine
learning process would be non-sense. Indeed, we want to predict the @uafictira sequence
before it happens. It would be like trying to forecast today's weathde we could simply
look outdoors. We therefore do not consider updates after a thrésifalis threshold is too
small, we have only few recent historical data before takingleaision. The thresholkl is
considered from the precise time we know path exploration shouldbeam. Our sample
related to the simulation is simply tfler 1) update message, after that time. To have a trade-
off between a smalkt to take fast decision and large enokgio have enough history and to
fill time window, we chose fok the valued. This means that we predict the outcome after the
fourth message of a sequence, applying this message to the decision tree.
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4.2. Hidden Markov Model

We are interested in designing a technique for path exploration sequieteeton so as to
enforce suppression of sequences of inter-domain BGP routing updates tthetrianental to

the routing system convergence. These sequences are respondinedetrimental effects
on BGP convergence time (since local BGP speaker propagategefit routing states to its
downstream neighbours). The objective is to decrease the local @®PBrgence time form

(Max_AS-Path - Min_AS-Path) x MRAI time interval to a probahiisime being the sum of
the sequence detection and the alternate best AS-path selection time.

To detect path exploration phenomenon in BGP update sequences (mods#gdeases of
AS-path sequences), we can design the solution around the following procedure:

- Step_1 path exploration event detection, i.e., determine whether an incomxRakS
sequence is actually associated to a path exploration event or not.

- Step_2 identification of the largest AS-Path sub-sequence associatdust event
before reaching end of the path exploration event to expectedly mirntineizenpact
of the corresponding BGP UPDATES on downstream neighbours.

- Step_3 anticipate BGP decision of the route selection process upon patiragiqui
event identification. This last step comprises the seleatibrihe alternate best
AS_Path that will be advertised to BGP peers.

4.2.1 BGP communication channels as Markov chains

Consider a system which may be described at any time as being af arset of N distinct
states (§ S,..., Sv). At regularly spaced discrete times, the system undergoesgeché
state (possibly back to the same state) according to a peblabilities associated with the
state. We denote the time instants associated with statgeshast=1, 2,. .., and we denote
the actual state at time t as Ip the particular case of a discrete, first order, Markowngha
this probabilistic description is truncated such that the protyabf the current state (at time
t) depends only on the preceding state (at time t-1).

Pla=S | ¢1=S, 2= -...:=S1] = P[d=F | ¢.1=S] = P[qt| ¢ +-1] (Ea.1)

If we only consider those processes in which the right-hand side afifidependent of time,
thereby leading to the set of state transition probabilifies B(q at time t+1|gat time t) =

N
P(9.+1]G,) with 1<i,j < N such thatz a; =1 (Eq.2). This stochastic process can be referred
j=1
to anobservable Markov model since the output of the process is the set of states at each
instant of time, where each state corresponds to a physical (observable) event

During path exploration events the BGP routing system transitioneéetdifferent states.
The transition between the different states is governed by a MahHaim. However, this
Markov chain is not directly observable -it is hidden- as the Path atiplorevent result from
uninformed BGP UPDATE processing. Nevertheless, the receivedreeguef AS-Paths (in
the locally processed BGP UPDATE messages) provide probabiliticnation about the
current state of the BGP routing system (at least the upspagdrof the network that is under
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interest). The BGP routing system state is an abstract \@riapresentative of the effect of
all BGP UPDATE message exchanges on the incoming BGP comnmaonicaiannel and
thus on the local BGP decision process. As the local routesidegirocess has no direct
access/knowledge of the global routing system state, the routing syateris snodelled as a
hidden variable. This hidden variable that can only be perceived by thedatar through
the sequence of observations as produced by the BGP communication ¢hatedled as a
stochastic process) whose sequential output represents the sequaBcpattis as received
by the local route selection process from the incoming BGP UPDAd$Sages. In summary,
the idea is that the observed BGP AS-Path sequence at a gneegan be explained as a
random function of an unobserved global state of the network (undergoing topblogic
change), which follows a Markov chain. Note that the proposed model doesmitot |
applicability per destination prefix but per cluster of destinati@fix@s undergoing the same
state transitions.

4.2.2 Hidden routing state as Hidden Markov Model

To include the case where the observation is a probabilistic dunofi the state, i.e., the
resulting model is a doubly embedded stochastic process with anlyimgliestochastic

process that is not observable (it is hidden) but can only be observed tarmibbr set of

stochastic processes that produce the sequence of observationedéiesnextended to so-
called Hidden Markov model (HMM). Such model represents stochasficzaces as Markov
chains where the states are not directly observed but areadsdoeith a probability density
function (pdf).

The generation of a random sequence is then the result of a randloin th& chain (i.e. the
browsing of a random sequence of states and of a draw (called ameined each visit of a
state. The sequence of states, which is the quantity of interesiecabserved only through
the stochastic processes defined into each state (i.e. you mustieparameters of the pdfs

of each state before being able to associate a sequencesf@tatg,d,...,qr to a sequence

of observations O = {0,,...,Or where T is the number of observations in the sequence. The
true sequence of states is therefore hidden by a first layodaifastic processes. HMMs are
dynamic models, in the sense that they are specifically designextcount for some
macroscopic structure of the random sequences.

The hidden Markov Model (HMM) with N hidden states and M distinct alagen symbols
per state that correspond to the physical output of the system bedwdled, is defined by
three probability distributions:

- (Sate) Transition probability distribution: probability g to go from a state i (gto a
state j (¢) is given by P(gat time t+1|gat time t) = P(g+1|G,) with 1<i,j <N. They
are stored in matriA = {a;} where each term;adenotes a state transition probability
P(9,t+1|G0).-

- Observation probability distribution: the probability distribution of emitting an
observation vector O in state j, is givenBy {b;(O)}, where KO) = P(O at time t |q
at time t) = P(®|q,). In the discrete case, each observatiptak®s its values from the
library of M observation symbols corresponding to the physical output cfygtem
being modelled. The emission probabilities are the pdfs that charactetizet&acy

- Initial state distribution: I = {11} where 1t = P(q at t = 1) = P(g) gives the initial
probabilities.
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There are three basic problems that must be solved for the med@,B,M) to be useful in
real-world applications.

Problem 1 Given the observation sequence O 7 @, ..., Or, and the model = (A,B,1),
the problem is to compute P{)| the probability of the observation sequence O, given the
model . This problem is solved by the Forward and Backward algorithms.

Problem 2 Given the observation sequence O 7 @, ..., Or, and the model = (A,B,1),

find the optimal state sequence Q & @, ..., gr associated with the given observation
sequence. A formal technique for finding the single best state sEx#rat maximizes
P(Q|O) given the modal) exists based on dynamic programming methods, called the Viterbi
algorithm [14], [15].

Problem 3 Determine a method to adjust the model parameters A, H]ldaodnaximize the
probability of the observation sequence O given the model. There is no kmawro
analytically solve for the model which maximizes the probabilitthefdbservation sequence.
In fact, given any finite observation sequence as training data, ithee optimal way of
estimating the model parameters. One can, however, choogéd,B,l) such that P(Q) is
locally maximized using an iterative procedure such as the Baum-Welch method.

4.2.3 Learning model

A classifier is a function h that maps observed AS-paths (BY3© state event classes. The
goal of the learning process is to find a function h that ctiyrpredicts the class h(O) of new
AS-path(s). This is accomplished by searching some space H siblposlassifiers for a
classifier that gives good results on the training data without overfitting.

A training example is a pair (), whereq is the label associated to state g and we will refer
to a set of N such examples as the training data. The trainiagag#aially consist of
sequences of (@) pairs. These sequences exhibit sequential correlation. Thagasy O
and q values are likely to be related to each other. For exampleg lmfourrence of a
topological change, all of the label values will be “no AS-Path change”. Afterwards, all of
the g label values will be “AS-Path increase”. Such patterngrapertant because they can
be exploited to improve the prediction accuracy of our classifierour case, it is only
possible to explore sequences by looking at the distribution of typacplithate) sequences
and then to see that this distribution changes when the BGP routinghstatges. The goal is
to construct a classifier h that can correctly predict a nbel lsequencg = h(O) given an
input sequence O.

HMM models the probability of the simultaneous occurrence of theressons O and
routing system events Q, that is, it is a representation of thedisintoution P(O,Q). Our
problem consists in classifying observed AS-Path sequences with aseptirpaccelerated
detection of path exploration sequences and subsequent selection (atigeneaf the

adequate AS-Path after a minimum number of path exploration hits have beferdrea

Each state of the BGP routing system is modelled as HMM. dtai& hidden states are
defined for the HMM. The output of the HMM populates the Loc-RIB. Nb&t the model

can be applied per destination prefixes or cluster of prefixes. @iesms O are modelled as
AS-Paths as received by the BGP route selection procesd#iass execution of the BGP
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route selection process. Note that AS-Path attribute informasioexiracted on a per-
destination prefix basis. If we definéddas the announcement of a prefix (with no change in
AS- path or attributes), and
A" : announcement of a prefix with an increasing AS-path length (upddoader
AS-Path)
- A: announcement of a prefix with the same AS-path but differeftiwtis (update of
attributes)
- A% announcement of a prefix with a different path of the same lengthate to a
different AS-Path of same length)
- WA): withdraw of an AS-Path for a given prefix

Then, a prevalent form of path exploration is the sequence of inge&Sipath length (for

an already announced prefix), followed by a withdraWahll closely coupled in timeA,

{A", A°, A'}, W The A", A’ andA’ updates are intermediate updates representing transient
routing states. The general sequence of announcement/withdrawal rektiniee., that is
characteristic of path exploration event, can be represented as follows:

AO! W AO)’ {A+’ AO’ A*}]_, W Al)! {A+! AO! A*}z, W AZ) '

This sequence can either terminate with a withdrawal oiligtdlon to a newly preferred best
path defined a#, {A*, A°, A'}° where the minimum value of the integer ¢ = 1 and maximum
value of the integer ¢ = n-1. Indeed, the seed of the path explopitenomenon the local AS
may explore all states from cycles of length(in_AS-Path + 1) to &, (Max_AS-Path).

At this point in time it is important to emphasize that suetusnces of AS-paths are the
result of the BGP route selection process that populatesotti®IB. The actual sequence of
incoming BGP routing updates as maintained in the Adj-RIB-In is, e.g., of the form

Adj-RIB-In: Ao, {A", A%, A"} 1,....{A", A%, A"} i, WAG), WAL), ..., WAR 1), WAD

The corresponding AS-Path as selected by the BGP route selection process is:

Loc-RIB: Ao, {Ao}1,..- {Ao}m: Aq, Ag,..., Am nONE

The sequence of announcement/withdrawal as advertised by the lo€alrd@@er to its
downstream neighbours is actually (whage= {A", A°, A'}4,..., An={A", A°, A’} )

AO! {AO}l,..-,{Ao}m, WAO)!AlsWAl)I ---’WAml)y AmWATTD

Hence, once the Adj-RIB-In pattern is known, the purpose is to detguraof the flow of
incoming BGP UPDATEsS, the AS-path (sequence) that will leaddb pattern of outgoing
BGP UPDATEs. As such, we want to determine the most probalie stguence for
reaching a “path exploration hit” given a certain observation sequéncp(q|O). The
corresponding observation sequence is then removed from the BGP Hleat®rsgrocess
such as to directly lead to a BGP UPDATE that does not expedeatisient local decisions.
The actual sequence of incoming BGP routing updates as maintainedioj-REB-In is, for
instance of the form

Adj-RIB-In: Ay, {A*, A% A'}1,.. {A", A% A" iy WAG), WAL, ..., WAR 1), WAD
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By detecting that the observation sub-sequere A%, A'}1,...{A", A°, A'}m, WA, ...,
WA, is part of an exploration sequence, the corresponding AS-Patreateddby the BGP
route selection process is the one given by the following sequence of announcements:

Loc-RIB: Ao, {Ao}1,....{Ao}m, NONE

The sequence of announcement/withdrawal as advertised by the loBalrd@r to its
downstream neighbours would then become

Ao, {Ao} 1,---,{Ao} m, WAG)

The HMM proposed to models the routing system states per (set sifhali®n prefix
(undergoing the same state transitions) is characterized as follows:

- N (the number of hidden states in the model): 4
These four states are defined as follows: State 1 (S1): Noails cRange, State 2
(S2): Re-initialization, State_3 (S3): AS_Path Increase, Stg®4): Path Exploration
Hit. These states actually characterise hidden global routibesshat are not directly
observable at the local BGP router. The term “Global”’ shall be stader here as the
part of the routing system that is “upstream” to local routertavthe ASes involved
in the path exploration event.

- M (the number of distinct observation symbols per state): observagiobots
correspond to the output of the system being modelled. In the presenthesse,
symbols correspond to the AS sequences as received in BGP UPDésdagas and
processed by the BGP route selection process that populates the Loc-RIB.

- A: the state transition probability distribution & P(Qw1|g:) with 1 < ij < N

correspond to the individual state transition of the routing system state.
B: the observation probability distribution in state;(3) = P(Q |q,).
- I the initial state distribution

4.2.4 Classifying AS-Path Sequences

Assume that the cost function L(i,j) gives the cost of assigniatg $abel value i to an
example whose true label is j. The goal is to find a classifiith minimum expected cost.
In our case, the cost function translates the impact of missadegptoration events and
impact of events not timely detected. One approach for developing slagsidier is to learn
a conditional probability density estimator P(Q|O) and then cjassihew observation
sequence O according to the formula which chooses the class wkuseted cost is
minimum.

q = argmin, Zj P(jO)LG, ) (Eq.3)

Incorporating the cost functions into our classifyitask of AS-Path sequences consists in
predicting the (conditional) joint distribution @il of the labels in the output sequence:
P(q|O). If this joint distribution can be accurately gigted, then the cost function can be
evaluated, and the optimal decisions can be chdseme are only interested in classifying
the entire sequence correctly, the objective ctmanspredicting argmaxP(q|O) correctly.
Predicting ¢ given an observed sequence depends on the nature of the cost function.
Because the HMM is a representation of the joimbpbility distribution P(O,Q), it can be
applied to compute the probability of any particutp given any particular © P(g|Oi).
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Hence, for the cost function L{gj), the optimal prediction is given by Eq.3. However, as the
length T of the sequences can be very long, the direct evaluatitis cfquation requires
O(N") probability evaluations (where N is the number of labels) caimpeactical. As the
cost function depends on the entire sequence, this computation caridomea in O(NL)
time. In this case, finding the;gtith the highest probability consists in computing:

q'i = argmay; P(q|G) (Eq.4)

This expression can be computed by means of the Viterbi algord#jn[15]. This dynamic
programming computes, for each class label | and each time #tepprobability of the most
likely path starting at time O end ending at time t with cla¥gHen the algorithm reaches the
end of the sequence, it has computed the most likely path from tioeife t and its
probability.
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5. Experimentation

5.1. Performance Objectivesand Evaluation Criteria

The different directions we experiment are depicted in Fig 5.d#fates a space that we call
the experimental space. This space suggests three possibléodeviedm astudy set. A
study set is a well-defined environment, specifying the topologieareveonsidering, their
sizes, and from where we are observing them. In the following sidsecive explain in
details how we use the various directions depicted in Fig. 5.1 to evaluate our model.

AS position
stub
core :
topologies
' xS >
single & ;;E:b
. > @
multiple & )
' &
#AS

Figure5.1: Different model experimentation directions

5.2. Methodology: Scenariosand Tools

5.2.1. Topologies

To evaluate our decision tree model, we define topologies used inghmton process, in
order to explore a number of scenarios and infer information on the model quality.

We define two types of topologietheoretical andrealistic, each of them being a network
interconnecting ASes (limiting to a single router per AS) through BGP.

In the following, we refer tal as the prefix to be announced and withdrawn. We also refer to
listeners as the routers collecting BGP UPDATE message.

Theoretical topologies are defined by mathematical attributes. ahealepend on a scale
factorn: the largemn, the larger the topologies in terms of ASes number.

In the subsequent figures, we define:

0 [—

. to be a peer relationship betweenyA8d AS.

. 1 to be a provider to customer relationship. The provider and customer
being respectively Asand AS.

« %o be acore AS.

_1_ to be a stub AS.
« L0 be other As.
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The AS announcing prefid is called theannouncer and sets the advertised prefix origin to its
router identifier.

We define two theoretical topologies:

* n-nodes clique, n ASes are in a full mesh, so E
that any two different ASes are neighbors. 1
Route selection is based on the shortest AS- Ak,
path. After a single prefix withdrawal, each iRk
router can potentially enumerate a large number A »:7="]
of alternate paths to the origin. % |

* n-nodes p-clique, For all AS with i < n, we a
chose AS to be considered as a provider 1
network, while all other ASes are considered as 4k o
peer networks. Peers pass on route » 1
advertisements learned from their provider,, AS ¢ »i7i4
to all other peers. "*

The Simula Research Laboratory [10] define a baseline modelSes Aealistic topologies,
following several properties of today's Internet topology such agthecal structure, power-
law degree distribution, strong clustering as well as a constant averagenggith |

From this model, they propose different deviations to be comparedheitbaseline model
such as:

* Dense core: multi-homing in the core of the network is much stronger

» Denseedge: edge ASes (Tier-3) have a higher multi-homing degree

» Strong core peering: core ASes (Tier-1) share more peering links

» Strong edge peering: edge ASes share more peering links

Usually, we refer to core and stub ASes as, respectively, Afesiovprovider belonging to
Tier-1 (T1) and the rest. However, we observe that 10,000 ASes topatogieén only, on
average, six core ASes. We, therefore, choose to pick the &a iAto the first 10% of all
ASes. Those 10% ASes always contains all T1 ASes, but also Tier-2 (T2).

For stub ASes, we select only 50% of All ASes, to reduce the nurhipeal stub ASes. All
those ASes belong to Tier-3 (T3).

5.2.2. Data Generation

To generate and observe a path exploration, we need to provoke it. Tvgookiadenarios
have been defined, to provoke path exploration in simulated topologies:
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* W scenario, a sequence of advertisements leading to the withdrawal of the concerned
prefix.
* A scenario, a sequence ending with a prefix still available.

Table 5.1 summarizes the scenarios and defines times in ordet teetwork convergence
before a new event occurs.

Data are generated using t8enBGP BGP simulator [11]. BGP UPDATE messages are then
collected and sorted per router, and then per prefix. The number alogdtien of listeners
vary and define the amount of available data to train and test odel.nmeach study set
groups one or more right cuboids in the experimental space that can c®veral points
with different characteristics.

Time (sec) W scenario A scenario
10 Announce Announce
3600 Withdraw Withdraw
7200 - Announce

Table5.1: Scenarios definition

5.3. Experimental Results

First simulations on theoretical and realistic topologies show gesults as most of their
classification success rates are above 95% [1]. We do nditttiese results here. However,
in topologies giving the worst classification success ratemdes p-clique, 82%), the model
is unable to distinct precisely the outcome of a path exploraffdris is due to the fact that
the path exploration after a withdrawal and after the announcementegksimilar in those
topologies.

5.3.1. Listener(s) Impact

Routers can base their data samples on their own local collsetpotnce of UPDATE
messages. They can also use other samples in order to maybe btribthgeer and more
accurate model.

In this section, we look at whether it is interesting to use ottiermation, how much it is
needed to increase the accuracy and which is more interestargns of location, either core
or stub.

Fig. 5.2 and Fig. 5.3 show respectively the number of listener impdat icote ASes and in
the stub ASes. These simulations are done on the realistic topologies.

As a first observation, as expected, we note that increasing thbenuh information
increases the average model performance. The location of #@ehst(either stub or core)
has only an impact on the performance when more than 1000 listenersedreAfter this
point, performance of stub listeners does not increase, as stulerssteave less information
compared to core listeners.

To obtain good performance, based on these simulations on realistic topotogieneeds to
use more than 200 routers information. This seems difficult to implement in theoréghl w
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We now evaluate the listeners location. We are interested by the influemsterwéris location
on the model performance. In the following we give results in ternpeiddrmances of the
models. Simulations are performed 25 times, the tables giving the theaninimum and the
maximum performance on those 25 runs.

» Training set with samples from core ASes

0 Test set with samples from core ASes:

Mean Min Max
Train 93.12% 92.88% 93.34%
Test 92.91% 92.71% 93.1%
0 Test set with samples from stub ASes:
Mean Min Max
Train 93.09% 92.84% 93.34%
Test 91.93% 89.9% 93.92%
» Training set with samples from stub ASes:
0 Test set with samples from core ASes:
Mean Min Max
Train 95.59% 95.33% 95.9%
Test 89.3% 88.2% 89.77%
0 Test set with samples from stub ASes:
Mean Min Max
Train 95.47% 95.2¢% 95.42%
Test 95.28% 95.06% 95.42%

Those results show that using the model in the same environsém ane it was built in
gives the best classification performance. The best perfornianaestub AS is obtained with
a model learnt in other stub ASes, while the best performaneedare AS is obtained using
a model learnt with samples from other core ASes. We alsoveb8&at samples from core
ASes generalize more to samples from stub ASes than the opposite.

5.3.2. Changing Environment

In this section, we evaluate the impact of small modificationwpologies on the model
performance. The idea of the simulation is the following: fronaimitrtg set composed of all
instances collected in all realistic topologies except onbéuwile a model. We, then, test the
model on the latter. Plotted results can be found in [1].

The extracted observations are the following:

* We obtain better performances with realistic topologies théim tveoretical ones. It
looks like models being built on those topologies generalize better fortogwogies
of the same kind.

» Baseline and strong-core peering topologies offer the best téstnpance, indicating
that those topologies are well decided thanks to our model.
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» Learning our model on all theoretical topologies but the p-clique onendb@sovide
good results when testing this model on p-clique topologies.

We are also interested in the accuracy of the learning wherdel ms placed in a completely
different environment. Mixing all topologies, all sizes together astdriers both at core and
stub ASes, we build one study set containing theoretical topologies, afal oealistic ones.
Results are:

Test at realistic Test at theoretical
Training at realistic 95.62% 50.09%
Training at theoretical 69.53% 96.41%

These results show that it is not a good idea to mix tree leamaalistic topologies for
theoretical ones, and vice-versa. Therefore, the model is notallestract enough from
topologies. It means, that implementing it on the real Internet eceaddd some learning time,
as we cannot use simulated tree, to abstract its model.

5.4. FutureWork

Future work will be conducted along the following directions:

1. Include Explicit Sate Duration Density: in a Markov chain, the (discrete) probability
density function of duration in state i is an exponential function. Timugonventional
HMMs, the inherent duration probability densityd) associated with statg, guith self
transition coefficient g that is, the probability of d consecutive observations in staie an
exponential function. Such function is inappropriate as the BGP UPDAESsage
exchanges is governed by the MRAI timer that regulates by ratentnfin fact introduces a
temporal correlation) exchange BGP UPDATEs. However, therenised to associate an
explicitly model duration density in an analytic form to each sfte. differences between
HMMs without and with explicit duration density is that in the fernsase, the states have
exponential duration densities based on self-transition coefficidrgseas in the latter case,
the self-transition coefficients are set to zero, and ahcéxguration density is specified. In
the latter case, a transition is made only after the appreprnishber of observations occurred
in the state (as specified by the duration density).

2. Explorationless withdraws. not all withdraws shall be considered as part of a state
sequence leading to a path exploration hit. Indeed, the HMM slealliaicthat onlyNAo) is a
trigger for exploration hit, withdraws of intermediate state®eaated to announcemermss,

..., Am occurring before WAg) shall not be considered part of an exploration sequence.
Taking this effect into account would lead to introduce a new state in our model.

3. HMM structure: offers a limited model of the true process producing the dataoPthe
problem stems from the Markov property as any relationship bettmeeseparated g values
(o1 and @) must be communicated via the intervening q's, izgand g. A first-order Markov
model, i.e., where P{gonly depends on.gq, cannot in general capture these kinds of
relationships. The second issue with the HMM model is that it generates @ad f©om the
corresponding  Several directions have been explored in the scientific tliterato
overcome the limitations of the HMM: Maximum Entropy Markov modBIEMs), Input-
Output HMMs (IOHMMs), and conditional random fields (CRFs). All thfese are
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conditional models that represent P(Q|O) rather than the joint pligbdtstribution P(O,Q).
They do not try to explain how the observation sequences O are generatestdad try to
predict the q values given the observation sequences. This permitsahese arbitrary
features of the observations including global features, featuresrillag non-local
interactions, and sliding windows. Nevertheless, MEMM and IOHMM nwosigffer from the
so-called label bias problem (note that HMM does not suffer tlmmlabel-bias problem).
Conditional Random Field [16] overcomes the label bias problem. In @RFelationship
among adjacent pairs«{g &) is modelled as a Markov Random Field conditioned on the
observation sequences (used as input), i.e., the influence betweemtadjacalues is
determined by the input. Hence, we will consider CRF to deterifmime can reduce the error
rate observed with HMMs.
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6. Recommendation for integration into common
ECODE architecture

After exposing a summary of the ECODE common architecturegxpéain the way the
procedures and the information exchanges they involve, as introduced by thmsedgciit
within the ECODE common architecture described in Deliverable D2.1.

A standard router comprises a forwarding engine (as part obmgrfding plane) and a
routing engine (as part of its control plane). The forwarding engiokides a packet
processor and a Forwarding Information Base (FIB). The routing engilugésca routing

information processor and Routing Information Base (RIB). The RiEgs the routes and (in
some cases) the metrics associated with those routes fioulgartnetwork destination
prefixes. This information contains the topology of the network immedgiate@und the

router. The FIB is used to find the proper interface to whichinjnt interface should send a
packet to be transmitted by the router. The FIB is constructed bashe RIB and according
to policies defined by the operator. It is optimized for fast lookup of destination addresse

Machine Learning Engine Control plane
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_ CR I_E_ Processing I o
| i
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Fig.6.1: ECODE Common Ar chitecture
The ECODE architecture introduces in addition to the forwarding, and routing engines:

= The Machine Learning Engine (MLE), part of the control plane, aimsogessing by
means of learning methods, the input from the network (obtained viarfting and
control components) to subsequently decide on forwarding and routing exedute
MLE provides the means to propagate the corresponding decisionsrtutimg and
forwarding engines. The MLE comprises four different functional compendime
Translator (syntax function), the Representation (semantic functlmm)Processing
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(learner and performer and associated register), and thebbDigtn. The MLE
includes also the following data structures:

o0 The Knowledge Information Base (KIB): stores learned models pasit)(
decisions. Both constitute the so-called prior knowledge.

0 The Observation Information Base (OIB) stores bounded sequences of
observations that can be accessed by means of the Register (Badext (on-
demand) by the Processor.

o The Learning Methods (LM) base: stores the learning algorithms

The interaction between the various engines is performed through dedicated isiterface

1. RF (for Routing — Forwarding): through this interface, the routing and
forwarding engines can communicate with each other and exchange
information if requires.

2. CR(for Cognitive — Routing): through this interface, MeE may retrieve data
from the routing engine and communicate to the routing engine theodeitis
takes.

3. CF (for Cognitive — Forwarding): similarly to théR, the MLE may retrieve
data from the forwarding engine and communicate to the forwarding engine the
decision it takes.

4. CM (for Cognitive - Monitoring): through this interface, thNeE may retrieve
path performance information from the.

Monitoring, routing, and/or forwarding engines provide raw and/or pre-processed da
to the Machine Learning EngineM(E) through theCM CR, and CF interface,
respectively. Th&/LE takes decisions and directs them to the routing, forwarding, and
monitoring engines.

= The Monitoring Engine (ME): part of the forwarding plane, its desormptan be
found in Deliverable D2.1 (Section 5.3).

In this use case, the ME is not involved in the mechanisms gekrifthis document, neither
is the FE. Processing of incoming BGP related informationmgdd to the MLE. More
precisely, the data sent from the RE to the MLE compriseemnjporal information:
timestamp, and optionally, the inter-arrival time (IAT) betwdenprevious and current BGP
UPDATE message, and ii) spatial information extracted fromBG® UPDATE message
itself: <Address Prefix, AS-Path, [AS originator], Peer>. The Bt#dbute identifies the BGP
speaker from which the BGP UPDATE message is received. tlihgssexchange from the
RE to the MLE comprise are thus of the form: (<Time, [IAT¥Address Prefix, AS-Path,
[AS originator], Peer>).

The MLE builds up its model using this spatio-temporal data: iddfiest processed by the
translator (format translation) and then semantically proddsgdhe representation module
before being processed as observations by the MLE processor. The outpetledrned
model comprises the sequence of announcements identified as asstuciie detected path
exploration event and the replacing announcement for that destinatidm. prais
information is directed to the RE. At the RE, it is used by duallBGP route selection
process to determine which announcements should be eliminated afexettution of this
process and which announcements shall replace it. This output idish@buted to the
router’'s neighbours or other nodes in the system. However, the router's (@etptiie BGP
UPDATE messages that are propagated to its downstream neighbdurnsflwence the
route selection of the BGP router's neighbour.
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7. Conclusion

In this deliverable, we have described the research work aclsevied in the task dedicated
to the experimentation on the technical objective 3 (TO3) addressigfimaalearning
techniques for improving routing system scalability and quality. Thel@m addressed by
this use case has been formalized. Then, the developed machinggléachniques, decision
trees and Hidden Markov Model (HMM) have been presented as usealvidepappropriate
solution to this networking change. The proposed machine-learning-bigaithms are
evaluated by off-line experimentation on representative Internetogipsl The simulated
codes used for this purpose constitute first high-level prototypesly=we explain how this
use case fits in the ECODE common architecture specified in deligddahl .

Detecting path exploration events, identifying path exploration announdentiedtawal
sequence, and anticipating BGP route selection process decisiongatenibhe effects of a
phenomenon inherently associated to the routing protocol of the lnteuteg system, i.e.,
BGP, is the fundamental problem addressed by this use casesAdtalje, the proposed
solutions (i.e. machine learning algorithms and associated procedppi®d on theoretical
and realistic topologies show good results as most of their otadifi success rates are
above 95%. However, in-nodes p-clique topologies giving the worst classification success
rates (82%), the learned model is unable to distinct preciselyotlicome of a path
exploration. The introduction of HMM is as a mean to infer a “globaliting state from the
observed sequence of BGP UPDATE messages. The results obtainedewitmMM model
needs to be complemented as detailed in Section 5.4 in order tenpreffects of
explorationless withdraws. We aim also at introducing expliaiesduration density as part
of our model.

The next objective is to experiment the proposed techniques on thHg pla&form by
developing prototype codes, perform the full integration as part oE@@®DE common
architecture. When these implementations will be up and runningpadsetage of tests and
validations including performance evaluation and functionality benchmarkihgpevcarried
out to check whether the results promised by simulations are confirmed.
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