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Executive Summary 
 
The aim of the ECODE experimental research project is to introduce a new Internet 
architectural component realized by means of a machine learning component. This 
deliverable, belonging to WP3 (Cognitive network and system experimentation), is part of a 
series of 3 deliverables – one per technical objectives (TO) as defined in the ECODE project 
technical annex. It aims at describing the feasibility, benefits and applicability of introducing 
machine learning techniques to improve the scalability and the quality of the Internet routing 
system that is based on Border Gateway Protocol (BGP). More specifically, this deliverable 
addresses the implementation, development and first experiments performed in the framework 
of TO3 related to this use case. We are interested in finding appropriate machine learning 
technique for path exploration sequences detection and identification so as to mitigate its 
effects. By mitigation, we mean here enforcing the suppression of subsequent sequences of 
BGP routing update messages that are detrimental to the routing system convergence (delays, 
and transient instabilities).  
 
After having formalized the fundamental cause deteriorating the routing system quality, i.e., 
uninformed path exploration, the machine learning techniques used and experimented for this 
use case are specified. In particular, we focus on two techniques: the decision trees and the 
hidden Markov model (HMM). A decision tree is a decision support tools using a tree-like 
graph of decisions. HMM is a statistical model in which the system being modelled is an 
embedded stochastic process with an underlying Markov process that is not observable (it is 
hidden) but can only be observed through another set of stochastic processes that produce the 
sequence of observations. Initial performance evaluation results of these techniques are 
detailed. At this stage, evaluation of the proposed machine learning has been performed by 
means of off-line experiments. These experiments have been conducted for realistic AS 
topologies, following several properties of today's Internet topology such as hierarchical 
structure, power-law degree distribution, strong clustering as well as a constant average path 
length. Further experiments are ongoing to refine these initial results and future work will 
consist in improving the learning model specified in this document. 
 
Based on these results and acquired experience in processing BGP UPDATE messages, we 
describe how we currently consider the introduction of the mechanisms involved in this use 
case into the ECODE common architecture as detailed in Deliverable D2.1. In particular, we 
show how the functionalities of this use case are split among the Routing Engine (RE) and the 
Machine Learning Engine (MLE) of the architecture, and which message exchanges are 
necessary among these components. 
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1. Acronyms 
 
AS Autonomous System 
BGP Border Gateway Protocol 
CRF Conditional Random Field 
CPU Central Processing Unit 
eBGP External Border Gateway Protocol 
FN False Negative 
FP False Positive 
HMM Hidden Markov Model 
iBGP Internal Border Gateway Protocol 
IP Internet Protocol 
ISP Internet Service Provider 
TN True Negative 
TP True Positive 
T1 Tier-1 
T2 Tier-2 
T3 Tier-3 
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2. Introduction 

2.1  Scope of the Document 
This document describes a proposal to reduce the BGP path exploration process duration 
using machine learning technique. The following describes the path exploration problem and 
the proposed solution.  
 
The Border Gateway Protocol (BGP) [4] is a path vector routing protocol used to maintain 
connectivity among the collection of independently administered Autonomous Systems (ASes) 
in the Internet.  Thanks to BGP, Internet Service Providers (ISPs) are able to connect to each 
other and end-users can connect to more than one ISP. The primary function of a BGP router 
is to exchange network reachability information with other BGP routers. Among others, this 
information includes a list of ASes that the reachability information goes across.  This list 
allows routers to prune routing loops while some policies at the AS level can be enforced. 
 
However, the slow convergence problem, inherent to path vector protocols, has shown 
significant impact on the performance of BGP [5]. In response to path failures or routing 
policy changes, BGP routers may try several transient paths before selecting a new best path 
or declaring a destination as unreachable. This process, called Path exploration, can occur due 
to topology changes, hardware failure, and new routers or sessions deployment. Also, session 
failures due to equipment failures, maintenance or due to congestion on the physical links can 
lead to routing changes. Finally, it can also be due to changes in routing policies after 
reconfiguration of preferences or route filters, or when policies in different ASes are 
conflicting. 
 
Routers mainly exchange information through BGP UPDATE message. It is gives 
information about a specific route in the network. BGP routers use this information to 
construct the graph describing the relationships among all known ASes. An update message 
will advertise feasible routes sharing common path attributes, or withdraw multiples 
unfeasible routes. Note that each UPDATE message can contain both advertisement and 
withdraws. 
 
Among all information contained in a router announcement, the AS-Path is of keen interest 
for us.  It is a simple vector of ASes defining in BGP the path used to join a prefix.  In this 
document, we denote an AS-Path as [An, An-1... A1, A0], where A0 is the origin AS to which d 
belongs and An the local BGP router. d is the destination prefix, announced by AS0. 
 
Let us consider the topology in Fig. 2.1 and the following events: AS0 announces a path to 
destination d, this announcement is received at its neighbours, and propagated hop by hop. 
Finally, when the network converges, AS5 knows three paths to reach d, i.e., [3,2,1,0], 
[4,2,1,0], and [7,6,1,0] (preferred in that order). 
 
Now, let us consider what happens if the link between AS0 and AS1 fails, making d 
unreachable at AS1. This failure triggers the following sequence of events: AS1 sends 
withdrawals to AS2 and AS6. In turn, each of them sends withdrawals to their own neighbours. 
Eventually, AS5 receive withdrawals from each of AS3, AS4, and AS7 (in some order). Let us 
suppose the first one send from AS3. AS5 then removes the path [3,2,1,0], selects [4,2,1,0] as 
the best path and sends it to its (other) neighbours. However, if the withdrawal from AS4  
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arrives next; then this best route is invalidated and AS5 selects (and announces) [7,6,1,0]. 
Finally, after AS5 receives the withdrawal from AS7, it invalidates the path announced earlier 
and sends a withdrawal. 
 

 
Fig. 2.1: BGP and path exploration. Solid/dashed lines represent eBGP/iBGP sessions 

 
This cycle of selecting and propagating (invalid) paths is called the path exploration. The 
cycle stops after all the obsolete routes have been explored and invalidated. 
 
In this document, we investigate machine learning techniques allowing to reduce the BGP 
convergence time due to path exploration. In particular, we focus on two techniques: the 
decision trees [12] and the hidden Markov model (HMM) [13]. A decision tree is a decision 
support tools using a tree-like graph of decisions while an HMM is a statistical model in 
which the system being modelled is assumed to be a Markov process with unobserved state. 
 

2.2  Structure of the Document  
The remainder of this document is organized as follows: Section 3. provides a formal model 
for the Path Exploration problem; Section 4 investigates the machine learning techniques for 
detecting Path Exploration and decreasing the BGP convergence time; Section 5 evaluates the 
performance of the techniques described earlier; Section 6 describes the introduction of the 
specified functional components into the ECODE common architecture as well as the 
interfaces and information exchanges between these components; finally, Section 7 concludes 
this deliverable.  
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3. Formalization of the Path Exploration Problem 
 
In Border Gateway Protocol (BGP) [4], the Internet inter-domain/inter-AS (autonomous 
system) routing protocol, a route is defined as a unit of information that pairs a set of 
destinations (reachability information) with the attributes of a path to these destinations. 
Routes are advertised between BGP routers in Update messages. The actual path to this set of 
destinations is the information reported in the AS_Path attribute that enumerates the sequence 
of Autonomous Systems (AS) numbers that the reachability information has traversed through 
BGP Update message. This information is sufficient for constructing a graph of AS 
connectivity (AS routing topology), from which routing loops may be detected and avoided, 
and, at the AS level, some policy decisions may be enforced.  
 
BGP is a policy-based shortest AS_Path vector routing protocol providing loop avoidance by 
detection, using the AS_Path information includes in the BGP update messages. This property 
of exchanging vectors of ASs (or AS_path) that prevent routing loops leads also to the path 
exploration phenomenon that is the root cause of the observed delays in BGP convergence 
time [8] [9]. In response to a topological change (e.g. failure) or a policy change (resulting in 
the advertisement or withdrawal of a given prefix associated to a previously selected 
AS_Path), path exploration is characterized by a sequence closely coupled in time of 
advertisements of the same prefix with a longer AS_Path (or a different AS_Path of the same 
length) followed either by a withdrawal for the same prefix (route to the destination prefix is 
declared unfeasible) or by stabilizing to a newly preferred AS_Path for the same prefix. The 
example depicted in Fig.3.1 (where A indicates an advertisement, and W a withdrawal) shows 
an example of BGP slow convergence due to uninformed path exploration. Note that the 
resulting effect on convergence time is theoretically: upper bound ~ O(N!) and lower bound = 
Ω[(N-3) x MRAI timer] where N is the number of AS. Nevertheless, in practice (due to the 
fact the Internet is not a complete graph), the convergence time can be estimated by the 
formula (Max_AS-Path - Min_AS-Path) x Minimum Route Advertisement Interval (MRAI) 
time interval. 
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Fig.3.1: Example of Path Exploration event 
 
The AS sequences included in the AS_Path attribute (or simply AS_Paths) of BGP UPDATE 
messages towards the same destination prefix are correlated in space. Topological 
correlation(s) in terms of ASs between different AS_Paths toward the same destination prefix 
result from the meshedness of the Internet AS topology. That is, an acyclic topology, e.g., a 
tree, does not exhibit path exploration, as there is only one feasible path to each destination. 
However, exchange of BGP UPDATE messages is spatially uncoordinated that is: there is no 
sequence number indicating to which instance of the topology the currently used AS_Path 
corresponds to. Uncoordinated BGP UPDATE message exchange coupled to the topological 
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correlations between AS_Paths, results in a transient phase during which each AS_Path 
towards the same destination is explored upon topological change.  
 
Path exploration phenomenon can occur both when a prefix is first advertised and when a 
prefix is withdrawn: 

- At prefix advertisement time: resulting from the differential propagation/processing 
delay across the AS topology that may result into suboptimal selection until the 
optimal path is being received. 

- At prefix withdrawn time: upon prefix withdrawal from a given BGP peer, transient 
selection by the local BGP speaker of a previously less preferred AS-path (learned 
from another BGP peer in a previously received route update announcement) that 
substitutes to the previously received and selected AS-path for the same prefix. This 
selection results in turn in a BGP UPDATE announcement for that prefix to its BGP 
peers. If this replacement path is itself subsequently withdrawn, the local BGP speaker 
will again select another route previously received from a different peer, if one exists. 
Hence, this process continues until no other transient path (usually of increasing 
length) in between the BGP router originating the BGP Update message and the local 
BGP router exist, i.e., is feasible for the same destination prefix.  

 
In both cases, for a given address prefix, the dependency between the AS_Path 
announced/withdrawn at time t(i) for that prefix and the newly selected (and thus 
subsequently announced) AS_Path for the same prefix at some time t(i+j), j > 0, results 
potentially in a transient exploration of all the intermediate paths. Each step is characterized 
by the exploration of all intermediate AS_Paths (usually of increasing AS_Path length) until 
reaching next best preferred AS_Path. This transient path exploration results in delaying the 
BGP routing protocol convergence. Intermediate states existence is due to the cycles in the 
topology (between the failure and the local BGP speaker). Cycles of length n, Cn, are 
eliminated by the BGP protocol (loop avoidance mechanism) but local BGP speaker retains 
the sequence toward certain AS even if it has already an AS_Path to that AS. If the latter is 
the seed of the path exploration phenomenon the local AS will explore all states from C2 
(Min_AS-Path + 1) to Cn-1 (Max_AS-Path). It is important to emphasize that in the example 
shown in Fig.3.1, exploring all intermediate state is “useless” in the sense that the address 
prefix D is unreachable. Hence, by directly detecting such event Router_1 can directly 
withdraw its route to prefix D after receiving the first BGP UPDATE message from Router_2 
(indicating the withdrawal of its route to D). 
 
In this context, we are interested in finding a technique for path exploration sequences 
detection so as to enforce suppression of sequences of inter-domain BGP routing updates that 
are detrimental to the routing system convergence. Formally, the objective is to decrease the 
local BGP convergence time form (Max_AS-Path - Min_AS-Path) x MRAI time interval to a 
probabilistic time (being the sum of the detection and the alternate best AS-path selection 
time).  
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4. Machine Learning Techniques to Detect and 
Mitigate Path Exploration 

4.1. Decision Trees 
The problem we are facing is the following: given a sequence of BGP UPDATE messages, 
we want to predict in advance the outcome. A sequence can either end with a new best path or 
with a withdrawal.  This is thus a binary classification problem. Having information about the 
outcome of the path exploration process will then allow one to improve the global BGP 
convergence speed. 
 
The model we develop is the entity in charge of predicting the outcome of a path exploration 
process. This model needs to fulfil two major constraints: it needs to be efficient and 
compliant with real-time constraints. Indeed, routers need to take quick decisions about 
whether aborting or continue the path exploration process. Also, routers may have limited 
CPU and memory resources. 
 
Several assumptions must be defined in order to be able to define such a model precisely: 

• A sequence of UPDATE messages related to a single prefix can be isolated. 
• There exists a path exploration detector able to detect the beginning and the end of a 

path exploration process, based on BGP UPDATE messages. 
 
The selected learning model is a tree-based learning. It matches our constraints as the 
complexity of the tree traversal is logarithmic to the number of nodes in the tree and the size 
of the tree depends on the number of rules contained in the tree. We chose to base our 
learning on received BGP UPDATE messages, which means the use of supervised technique 
to build the tree.   
 
This section is decomposed as follows. Section 4.1.1 describes an overview of the supervised 
learning technique and details the algorithm used to build the tree. Decision trees, support 
tools using a tree-like graph of decisions, are detailed in Section 4.1.2. Next, we describe in 
Section 4.1.3, the selected the tree building algorithm: C4.5 [3]. Section 4.1.4 defines the 
measurements, i.e., the parameters used to describe the tree and defines the difference 
between a path exploration process ending with a withdrawal and an announcement. Finally, 
Section 4.1.5 provides an application to a real example of a path exploration process. 

4.1.1. Supervised Learning 
The supervised learning algorithm works as follows: given a set of possible outputs, the 
algorithm generates a function that maps any input to one of the outputs. This may correspond 
either to a classification problem where the inputs (typically vectors, but not necessarily) are 
mapped to one of several classes, or to a regression problem where the resulting function 
maps this time input to a continuous domain. 
 
The data is called the input of the algorithm, while the prediction, i.e., the result of the 
algorithm application, is called the output. The learning process uses several input-output 
pairs as valid instances of the function, called training sample, and should return a function h 
of the inputs that approximates at best the output. This h can be used to predict the output for 
new inputs, as well as to understand the relationship between input and output. 
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When the output is symbolic, the supervised learning is a classification problem, while a 
numerical output refers to a regression problem. Being able to determine whether people will 
appreciate the time spend in a holiday centre, function of the time, is an example of 
classification problem. We have, for example, the following instances: 
 

Sky Temperature Humidity Wind Water Forecast Enjoy? 
Sunny Warm Normal Strong Warm Same Yes 
Sunny Warm High Strong Warm Same Yes 
Rainy Cold High Strong Warm Change No 
Sunny Warm High Strong Cold Change Yes 

 
We may want to predict whether, for some new weather, people will enjoy the time: 
 

Sky Temperature Humidity Wind Water Forecast Enjoy? 
Sunny Cold Normal Strong Warm Same ? 
Rainy Warm Normal Strong Warm Same ? 

 
We could have instead sunlight, air and water temperature, humidity, wind, and forecast 
change measures, that would allow to predict which percentage of tourists will enjoy the time, 
in which case we would face a regression problem. The prediction space would not be limited 
to a set of symbolic values but would be of infinite size. 
 
The function h will be restricted by a hypothesis space H defining a family of candidate 
models. We can take H, e.g., as the set of all linear functions on the inputs, or quadratic 
functions, or some very complex functions on the inputs. 
 
A learning phase allows one to determine the best parameters for the functions. Best values 
do not mean that we search for the function that fits the best training sample. There comes the 
test set, which is a subset of the data set (for example 30%) used to estimate the classification 
performance of a model obtained on the rest of the data set (the 70% left). The performance of 
a model can be expressed in terms of error rate, which is the percentage of incorrectly 
classified instances in the data set. Several other measurements can be used as well. The 
confusion matrix reports predicted class facing the actual class, as shown in Table 4.1. A 
classification algorithm will be the best when its normalized confusion matrix tends to 
identity matrix. In a normalized confusion matrix, is composed of element: Ncmij = cmij / Ni  
where cmij the elements of the confusion matrix and Ni the number of element from the true 
class i. 
 

Actual Class  
X Y 

X True Positive (TP) False Positive (FP) Predicted Class 
Y False Negative (FN) True Negative (TN) 

Table 4.1: Confusion matrix in which each column represents the number of occurrences of a real class, 
while each row represents the number of occurrences of the estimated class. This table assumes that only 

two classes are used, while it could be build for any finite number of classes. 
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Alternative performance measurements are: 

• Correct Classification Rate = 1 - error rate = 
FNFPTNTP

TNTP

+++
+

.  

We observe that this measure can be very high as soon as one class strongly dominates 
among samples. Indeed, the dominated class would not visibly influence the measure 
in case of misclassification. 

• TP Rate = sensitivity = 
FNTP

TP

+
 

• Precision = Positive Predictive Value = 
FPTP

TP

+
 

• TN Rate = Specificity = 1 - FP Rate = 
TNFP

TN

+
 

. 
We say that some model overfits the data if the performance obtained on the learning set is 
almost maximal, while worst on the test set. Overfitting indicates that the model is too close 
to the training set, and cannot be generalized to any input.   

 
Fig. 4.1: Overfitting in supervised learning 

 
Fig. 4.1 shows an example of overfitting in supervised learning. The training error is plain 
line and the validation error (test set error) is the dashed line. The overfitting occurs when the 
training error decrease while the test set error increase, after the vertical dotted line on Fig. 
4.1.  This point is the optimal complexity of the model. 
 
When not enough data is available to extract a test set, we use k-fold cross validation. The 
data set is partitioned into k subsets. For each subset, the model is learnt on data not contained 
in the subset, while the error rate is calculated on the data of the subset. The mean error rate is 
over the k subsets. A particular case of cross validation is when k equals the data size. This is 
called leave-one-out cross validation. 
 
Several supervised learning algorithms exist. However, we only focus on the decision tree 
algorithm that is the one used to resolve the path exploration problem. 
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4.1.2  Decision Tree 
Decision trees are decision support tools using a tree-like graph of decisions [12]. An example 
for the weather problem introduced in Section 4.1.1 could be the following: 
 

 
Fig. 4.2: Decision tree and equivalent set of rules directly translated from 

 
This tree verifies several properties: 

• Each internal node tests an attribute 
• Each branch corresponds to an attribute value 
• Each leaf node assigns a classification 
• Each path from root to leaf represents a conjunction of attribute values 
• The whole tree represents a disjunction of conjunctions 

The tree classification for a previously unseen example is accomplished following the path 
corresponding to observed attribute values. 
 
Fig. 4.2 shows an example of rules derivation from a decision tree. It is interesting to notice 
that those rules (and therefore the decision tree) offer good human readability and 
understanding properties thanks to their simplicity. 
 
Trees are built iteratively. The best-known decision tree builder algorithms are ID3 [2] and 
C4.5 [3]. The next section focuses on the C.4.5 algorithm as it is the one we selected. 

4.1.3  C.4.5 Algorithm 
The ID3 algorithm, introduced by Quinlan [2], works as follows: for each node, the best 
decision attribute is chosen to maximize the expected reduction in entropy after sorting on this 
attribute, also called the Gain.  The C4.5 algorithm [3], also introduced by Quinlan, is an 
improvement of the ID3 algorithm using the information entropy. Compared to ID3, C4.5 
introduces two new goals: the avoidance of overfitting to the data and the incorporation of 
continuous-valued attributes.  
 
On the first side, C4.5 uses a validation set distinct from the training set used to detect 
overfitting. When increasing the tree depth, if the classification performance increases on the 
training set and decreases on the validation set, the hypothesis being built is overfitting the 
training data set. The growth is stopped when the data split is not statistically significant. 
Post-pruning is applied on the whole tree to remove sub-trees whose removals improve 
validation set accuracy. The post-pruning idea is to infer the tree as well as possible, convert 
the tree to an equivalent set of rules, and then prune each rule by removing any preconditions 
that result in improving its estimated accuracy. And finally, sort final rules by their estimated 
accuracy and consider them in this sequence when classifying. 
 
Regarding continuous-valued attributes, C4.5 selects candidate thresholds midway between 
instances with distinct classifications. For example, let us consider whether a player will want 
to play tennis depending on the temperature. We have the following data: 
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Temperature 5 9 17 24 29 35 
Play tennis? No No Yes Yes Yes No 
 
In this case, candidate thresholds are 13 (between 9 and 17) and 32 (between 29 and 35). In 
the first case, the entropy gain will be 0.1887 and in the later case 0.0290. C4.5 will then 
choose to split around value 13: all temperatures lower than 13 and those at least equal to 13. 

4.1.4  Measurements 
This section describes the measurements that are used to build the model. Those 
measurements allow us to abstract from the UPDATE messages sequences previously 
obtained per prefix, and this way to get rid of any reference to IP prefixes and AS numbers. 
Those measurements lead to build a decision tree to predict, with more accuracy, the binary 
outcomes of a path exploration process, i.e. it ends with a new path or a withdrawal.  
 
We define five different measurements split into three different categories. Intensity 
measurements aim at detecting bursts of activity. They therefore include a time component in 
order to adapt differently their values depending on the occurrence frequency for events they 
are looking at in received UPDATE messages. Categorical measurements define several 
categories in which received UPDATE messages are classified.  Counting measurements are 
numerical values taken from samples. In our model, those measurements adapt their values 
depending on BGP UDPATE messages types and attributes.  In the remainder of this section, 
we deeply discuss each of those measurements. 
 
The Intensity measurements aim at detecting bursts of activity. The measurements follow 
exponentially weighted sums, meaning that, whenever a new UPDATE message arrives, a 
measure takes a value according to the arrived UPDATE message and the previous value of 
this measure, multiplied by some decreasing exponential. Given the new UPDATE message u 
and any positive function f of the new UPDATE message to be defined depending on the 
measure itself, intensity measures are updated as follows: 
 

Qn = f(u) + Qn-1 2
-r∆t   

 
The new value of the measurement Qn is thus function of its previous value Qn-1, with Qn-1 = 0 
when n =0. Those measurements aim at detecting bursts of activity, they then need to contain 
a temporal component. ∆t is the time elapsed since last received update. R is the decay factor, 
determining the half-life of the data used. 
 
We define two intensity measurements: 

• BGP update arrival frequency (M1), where f(u) = 1.  
• Number of new AS-paths (M2), where f(u) = N, N is an indicator set to 1 if the 

UPDATE message contains an AS-path not recently observed, 0 otherwise.  It intends 
to capture the variation in the number of AS-paths. Upon link/router failure 
occurrence, BGP experiences slow convergence problem. During this phase, BGP 
routers may receive a number of UPDATE messages with a previously unseen AS-
Path, or seldom seen. 

 
The Categorical measurements are based on the sampled message itself but also on the 
previous ones (from the same update sequence). 
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We define two categorical measurements: 
• BGP UPDATE type (M3), the idea is to classify the message into eight possible types. 

The measure is extracted from the decision tree depicted in Fig. 4.3 based on previous 
messages. Each leaf of the tree represents a class (values from 0 to 7). 

• AS-path occurrence frequency (M4), this measure intends to capture whether an AS-
path is frequently observed or not. As AS-path diversity tends to increase during the 
path exploration process. 

 

 
Figure 4.3.: BGP update type measure classification tree 

 
We consider a single Counting measurement: 

• AS-path difference (M5), this measure intends to measure the difference between the 
AS-path received with the previous ones. The difference is calculated using the 
Levenshtein distance [6]. 

 
The Levenshtein distance L returns the minimum number of operations needed to transform 
one vector into another.  The possible operations are insertion, deletion, or substitution of a 
single element in the vector. For example: 
 

L([34, 21, 19, 42],[78, 34, 15, 19]) = 3. 
 
Because we need: 
One addition:  [34, 21, 19, 42]  ⇒ [78, 34, 21, 19, 42]. 
One deletion:  [78, 34, 21, 19, 42]  ⇒ [78, 34, 21, 19]. 
One substitution:  [78, 34, 21, 19]  ⇒ [78, 34, 15, 19]. 
 
The most stable AS-path is the one shared by most messages in the UPDATE message 
sequence. It is the one with the most AS-path occurrence frequency. 

4.1.5.  Application to a Real Example 
Table 4.2 gives an example of a path exploration process (chronologically ordered). The 
topology that generated this sequence is represented in Fig. 4.4. Our model works on a per 
prefix basis, therefore the sequence always ends either with an announcement or a withdrawn. 
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Timestamp Type AS-path 
1023 Announcement [13, 11, 0, 58] 

3537 Announcement [13, 0, 58] 
360029 Announcement [13, 1, 0, 58] 
362509 Announcement [13, 18, 16, 0, 58] 
365114 Announcement [13, 11, 14, 1, 0, 58] 
367542 Announcement [13, 28, 15, 1, 12, 0, 58] 
370225 Announcement [13, 14, 11, 10, 15, 1, 12, 0, 58] 
370932 Withdrawal  
378682 Announcement [13, 16, 24, 26, 19, 11, 10, 15, 1, 12, 0, 58] 
379157 Withdrawal  

Table 4.2: UPDATE messages received by an atomic AS part of a 30-Ases-clique topology for which a 
prefix is announced before being withdrawn. 

 
 
Data from Table 4.2 is obtained upon simulation of a prefix announcement then withdrawn in 
the topology represented in Fig. 4.4. The table represents the whole path exploration process 
for a single prefix, showing the different needed parameters. The timestamp is the time at 
which the BGP UPDATE message has been received. The type is the BGP UPDATE type, 
whether an announcement or a withdrawal. The AS-Path is, as explain before, a vector of 
ASes. 

 
Figure 4.4: A 30-ASes-clique topology (theoretical topology). 

  
 
 
The first step is the pre-processing.   This is a direct application of measurements to UPDATE 
message sequence. For example, the first message of the UPDATE messages sequence 
corresponds to the first row measurements. The global table must then be stored. 
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Table 4.3 is the pre-processing result obtained with the update messages of Table 4.2. 
 
M1 (r=0.01) M1 (r=0.5) M2 (r=0.0333) M3 M4 M5 

10 10 10 0 10 0 
1,84008E+11 1,00016E+11 1,55974E+11 7 5 0 

1E+11 10 10 6 5 1 
1,84206E+11 1,00019E+11 15641536319 6 5 2 
2,53775E+11 1,00012E+11 1,85733E+11 6 333333333333 2 
3,14466E+11 1,00022E+11 2,06047E+11 6 25 0 
3,61101E+11 10000915754 2,10921E+11 6 2 3 
4,43831E+11 1,08628E+11 1,79163E+11 1 166666666667 8 
3,5937E+11 10 1,29948E+11 0 2 0 
4,4773E+11 1,19278E+11 1,16454E+11 1 4 0 

Table 4.3:  Measurements based on the sequence of UPDATE messages  of Table 4.2. The pre-processing 
permitted to abstract from any AS number or prefix. The result is now ready for machine learning. 

 
We cannot consider vectors of measurements as input in the machine learning process. We 
still have to extract samples from them. The objective of the learning is to be able to predict 
whether a sequence of update messages will end either in an announcement or a withdrawal. 
When we have enough data samples, the C4.5 algorithm is executed to generate a decision 
tree, as described in Section 4.1.3.  
 
Considering the measurements related to the last update of a sequence to apply the machine 
learning process would be non-sense. Indeed, we want to predict the outcome of the sequence 
before it happens. It would be like trying to forecast today’s weather while we could simply 
look outdoors. We therefore do not consider updates after a threshold k. If this threshold is too 
small, we have only few recent historical data before taking our decision. The threshold k is 
considered from the precise time we know path exploration should have begun. Our sample 
related to the simulation is simply the (k+1)th update message, after that time. To have a trade-
off between a small k to take fast decision and large enough k to have enough history and to 
fill time window, we chose for k the value 4. This means that we predict the outcome after the 
fourth message of a sequence, applying this message to the decision tree. 
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4.2. Hidden Markov Model 
We are interested in designing a technique for path exploration sequences detection so as to 
enforce suppression of sequences of inter-domain BGP routing updates that are detrimental to 
the routing system convergence. These sequences are responsible for the detrimental effects 
on BGP convergence time (since local BGP speaker propagates transient routing states to its 
downstream neighbours). The objective is to decrease the local BGP convergence time form 
(Max_AS-Path - Min_AS-Path) x MRAI time interval to a probabilistic time being the sum of 
the sequence detection and the alternate best AS-path selection time.  
 
To detect path exploration phenomenon in BGP update sequences (modelled as sequences of 
AS-path sequences), we can design the solution around the following procedure:  
 

- Step_1: path exploration event detection, i.e., determine whether an incoming AS-Path 
sequence is actually associated to a path exploration event or not.   

 
- Step_2: identification of the largest AS-Path sub-sequence associated to this event 

before reaching end of the path exploration event to expectedly minimize the impact 
of the corresponding BGP UPDATEs on downstream neighbours. 

 
- Step_3: anticipate BGP decision of the route selection process upon path exploration 

event identification. This last step comprises the selection of the alternate best 
AS_Path that will be advertised to BGP peers. 

 

4.2.1  BGP communication channels as Markov chains   
Consider a system which may be described at any time as being in one of a set of N distinct 
states (S1, S2,…, SN). At regularly spaced discrete times, the system undergoes a change of 
state (possibly back to the same state) according to a set of probabilities associated with the 
state. We denote the time instants associated with state changes as t = 1, 2,. . . , and we denote 
the actual state at time t as qt. In the particular case of a discrete, first order, Markov chain, 
this probabilistic description is truncated such that the probability of the current state (at time 
t) depends only on the preceding state (at time t-1). 
 

P[qt=Sj | qt-1=Si, qt-2=Sk, …,q1=S1] = P[qt=Sj | qt-1=Si] = P[qj,t | qi,t-1]           (Eq.1) 
 
If we only consider those processes in which the right-hand side of (1) is independent of time, 
thereby leading to the set of state transition probabilities aij = P(qj at time t+1|qi at time t) = 

P(qj,t+1|qi,t) with 1 ≤ i,j ≤ N such that 1
1

=∑
=

N

j
ija  (Eq.2). This stochastic process can be referred 

to an observable Markov model since the output of the process is the set of states at each 
instant of time, where each state corresponds to a physical (observable) event.  
 
During path exploration events the BGP routing system transitions between different states. 
The transition between the different states is governed by a Markov chain. However, this 
Markov chain is not directly observable -it is hidden- as the Path exploration event result from 
uninformed BGP UPDATE processing. Nevertheless, the received sequences of AS-Paths (in 
the locally processed BGP UPDATE messages) provide probabilistic information about the 
current state of the BGP routing system (at least the upstream part of the network that is under 
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interest). The BGP routing system state is an abstract variable, representative of the effect of 
all BGP UPDATE message exchanges on the incoming BGP communication channel and 
thus on the local BGP decision process. As the local router decision process has no direct 
access/knowledge of the global routing system state, the routing system state is modelled as a 
hidden variable. This hidden variable that can only be perceived by the local router through 
the sequence of observations as produced by the BGP communication channel (modelled as a 
stochastic process) whose sequential output represents the sequence of AS-paths as received 
by the local route selection process from the incoming BGP UPDATE messages. In summary, 
the idea is that the observed BGP AS-Path sequence at a given time can be explained as a 
random function of an unobserved global state of the network (undergoing topological 
change), which follows a Markov chain. Note that the proposed model does not limit 
applicability per destination prefix but per cluster of destination prefixes undergoing the same 
state transitions. 

4.2.2  Hidden routing state as Hidden Markov Model 
To include the case where the observation is a probabilistic function of the state, i.e., the 
resulting model is a doubly embedded stochastic process with an underlying stochastic 
process that is not observable (it is hidden) but can only be observed through another set of 
stochastic processes that produce the sequence of observations, the model is extended to so-
called Hidden Markov model (HMM). Such model represents stochastic sequences as Markov 
chains where the states are not directly observed but are associated with a probability density 
function (pdf).  
 
The generation of a random sequence is then the result of a random walk in the chain (i.e. the 
browsing of a random sequence of states and of a draw (called an emission) at each visit of a 
state. The sequence of states, which is the quantity of interest can be observed only through 
the stochastic processes defined into each state (i.e. you must know the parameters of the pdfs 
of each state before being able to associate a sequence of states Q = q1,q2,…,qT to a sequence 
of observations O = O1,O2,…,OT where T is the number of observations in the sequence. The 
true sequence of states is therefore hidden by a first layer of stochastic processes. HMMs are 
dynamic models, in the sense that they are specifically designed to account for some 
macroscopic structure of the random sequences.   
 
The hidden Markov Model (HMM) with N hidden states and M distinct observation symbols 
per state that correspond to the physical output of the system being modelled, is defined by 
three probability distributions: 
 

- (State) Transition probability distribution: probability aij to go from a state i (qi) to a 
state j (qj) is given by P(qj at time t+1|qi at time t) = P(qj,t+1|qi,t) with 1 ≤ i,j ≤ N. They 
are stored in matrix A = {aij} where each term aij denotes a state transition probability 
P(qj,t+1|qi,t).  

 
- Observation probability distribution: the probability distribution of emitting an 

observation vector O in state j, is given by B = {bj(O)}, where bj(O) = P(O at time t |qj 
at time t) = P(Ot |qj,t). In the discrete case, each observation Ot takes its values from the 
library of M observation symbols corresponding to the physical output of the system 
being modelled. The emission probabilities are the pdfs that characterize each state qj.  

 
- Initial state distribution: ΠΠΠΠ = {πi} where πi = P(qi at t = 1) = P(qi,1) gives the initial 

probabilities. 
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There are three basic problems that must be solved for the model λ = (A,B,Π) to be useful in 
real-world applications. 
 
Problem 1: Given the observation sequence O = O1, O2, …, OT, and the model λ = (A,B,Π), 
the problem is to compute P(O|λ), the probability of the observation sequence O, given the 
model l. This problem is solved by the Forward and Backward algorithms. 
 
Problem 2: Given the observation sequence O = O1, O2, …, OT, and the model λ = (A,B,Π),  
find the optimal state sequence Q = q1, q2, …, qT associated with the given observation 
sequence. A formal technique for finding the single best state sequence (that maximizes 
P(Q|O) given the model λ) exists based on dynamic programming methods, called the Viterbi 
algorithm [14], [15].  
 
Problem 3: Determine a method to adjust the model parameters A, B, and Π to maximize the 
probability of the observation sequence O given the model. There is no known way to 
analytically solve for the model which maximizes the probability of the observation sequence. 
In fact, given any finite observation sequence as training data, there is no optimal way of 
estimating the model parameters. One can, however, choose λ = (A,B,Π) such that P(O|λ) is 
locally maximized using an iterative procedure such as the Baum-Welch method. 

4.2.3  Learning model 
A classifier is a function h that maps observed AS-paths (O) to BGP state event classes. The 
goal of the learning process is to find a function h that correctly predicts the class h(O) of new 
AS-path(s). This is accomplished by searching some space H of possible classifiers for a 
classifier that gives good results on the training data without overfitting. 
 
A training example is a pair (O,q), where q is the label associated to state q and we will refer 
to a set of N such examples as the training data. The training data actually consist of 
sequences of (O,q) pairs. These sequences exhibit sequential correlation. That is, nearby O 
and q values are likely to be related to each other. For example, before occurrence of a 
topological change, all of the q label values will be “no AS-Path change”. Afterwards, all of 
the q label values will be “AS-Path increase”. Such patterns are important because they can 
be exploited to improve the prediction accuracy of our classifier. In our case, it is only 
possible to explore sequences by looking at the distribution of typical (legitimate) sequences 
and then to see that this distribution changes when the BGP routing state changes. The goal is 
to construct a classifier h that can correctly predict a new label sequence q = h(O) given an 
input sequence O. 
 
HMM models the probability of the simultaneous occurrence of the observations O and 
routing system events Q, that is, it is a representation of the joint distribution P(O,Q). Our 
problem consists in classifying observed AS-Path sequences with as purpose the accelerated 
detection of path exploration sequences and subsequent selection (or generation) of the 
adequate AS-Path after a minimum number of path exploration hits have been reached.  
 
Each state of the BGP routing system is modelled as HMM state. Four hidden states are 
defined for the HMM. The output of the HMM populates the Loc-RIB. Note that the model 
can be applied per destination prefixes or cluster of prefixes. Observations O are modelled as 
AS-Paths as received by the BGP route selection process thus, before execution of the BGP 
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route selection process. Note that AS-Path attribute information is extracted on a per-
destination prefix basis. If we defined A as the announcement of a prefix (with no change in 
AS-path or attributes), and  

- A+ : announcement of a prefix with an increasing AS-path length (update to longer 
AS-Path) 

- A*: announcement of a prefix with the same AS-path but different attributes (update of 
attributes) 

- A0: announcement of a prefix with a different path of the same length (update to a 
different AS-Path of same length)  

- W(A): withdraw of an AS-Path A for a given prefix      
 
Then, a prevalent form of path exploration is the sequence of increasing AS path length (for 
an already announced prefix), followed by a withdrawal W, all closely coupled in time: A, 
{A+, A0, A*}, W. The A+, A0 and A* updates are intermediate updates representing transient 
routing states. The general sequence of announcement/withdrawal of interest, i.e., that is 
characteristic of path exploration event, can be represented as follows:  
 
 A0, W(A0), {A+, A0, A*} 1, W(A1), {A+, A0, A*} 2, W(A2), …  
 
This sequence can either terminate with a withdrawal or stabilization to a newly preferred best 
path defined as A, {A+, A0, A*} c where the minimum value of the integer c = 1 and maximum 
value of the integer c = n-1. Indeed, the seed of the path exploration phenomenon the local AS 
may explore all states from cycles of length C2 (Min_AS-Path + 1) to Cn-1 (Max_AS-Path).  
 
At this point in time it is important to emphasize that such sequences of AS-paths are the 
result of the BGP route selection process that populates the Loc-RIB. The actual sequence of 
incoming BGP routing updates as maintained in the Adj-RIB-In is, e.g., of the form 
 
 Adj-RIB-In: A0, {A+, A0, A*} 1,…,{A+, A0, A*} m, W(A0), W(A1), …, W(Am-1),  W(Am)   
 
The corresponding AS-Path as selected by the BGP route selection process is: 
  
 Loc-RIB: A0, {A0} 1,…,{A0} m, A1, A2,…, Am, none 
 
The sequence of announcement/withdrawal as advertised by the local BGP router to its 
downstream neighbours is actually (where A1 = {A+, A0, A*} 1,…, Am = {A+, A0, A*} m)  
 
 A0, {A0} 1,…,{A0} m, W(A0), A1, W(A1), …, W(Am-1),  Am, W(Am)    
  
Hence, once the Adj-RIB-In pattern is known, the purpose is to detect as part of the flow of 
incoming BGP UPDATEs, the AS-path (sequence) that will lead to such pattern of outgoing 
BGP UPDATEs. As such, we want to determine the most probable state sequence for 
reaching a “path exploration hit” given a certain observation sequence O: p(q|O). The 
corresponding observation sequence is then removed from the BGP route selection process 
such as to directly lead to a BGP UPDATE that does not expose the transient local decisions. 
The actual sequence of incoming BGP routing updates as maintained in the Adj-RIB-In is, for 
instance of the form 
 
 Adj-RIB-In: A0, {A+, A0, A*} 1,…,{A+, A0, A*} m, W(A0), W(A1), …, W(Am-1),  W(Am)   
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By detecting that the observation sub-sequence {A+, A0, A*} 1,…,{A+, A0, A*} m, W(A0), …, 
W(Am) is part of an exploration sequence, the corresponding AS-Path as selected by the BGP 
route selection process is the one given by the following sequence of announcements: 
  
 Loc-RIB: A0, {A0} 1,…,{A0} m, none 
 
The sequence of announcement/withdrawal as advertised by the local BGP router to its 
downstream neighbours would then become 
 
 A0, {A0} 1,…,{A0} m, W(A0)  
 
The HMM proposed to models the routing system states per (set of) destination prefix 
(undergoing the same state transitions) is characterized as follows: 

- N (the number of hidden states in the model): 4  
These four states are defined as follows: State_1 (S1): No AS_Path change, State_2 
(S2): Re-initialization, State_3 (S3): AS_Path Increase, State_4 (S4): Path Exploration 
Hit. These states actually characterise hidden global routing states that are not directly 
observable at the local BGP router. The term “Global” shall be understood here as the 
part of the routing system that is “upstream” to local router wrt to the ASes involved 
in the path exploration event.  

- M (the number of distinct observation symbols per state): observation symbols 
correspond to the output of the system being modelled. In the present case, these 
symbols correspond to the AS sequences as received in BGP UPDATE messages and 
processed by the BGP route selection process that populates the Loc-RIB.  

- A: the state transition probability distribution aij = P(qj,t+1|qi,t) with 1 ≤ i,j ≤ N 
correspond to the individual state transition of the routing system state. 

- B: the observation probability distribution in state j, bj(O) = P(Ot |qj,t).  
- ΠΠΠΠ: the initial state distribution  

4.2.4 Classifying AS-Path Sequences 
Assume that the cost function L(i,j) gives the cost of assigning state label value i to an 
example whose true label is j. The goal is to find a classifier h with minimum expected cost. 
In our case, the cost function translates the impact of missed path exploration events and 
impact of events not timely detected. One approach for developing such a classifier is to learn 
a conditional probability density estimator P(Q|O) and then classify a new observation 
sequence O according to the formula which chooses the class whose expected cost is 
minimum.  
 
    ),()(minarg jiLOjPq

ji∑=                              (Eq.3) 

 
Incorporating the cost functions into our classifying task of AS-Path sequences consists in 
predicting the (conditional) joint distribution of all of the labels in the output sequence: 
P(qi|Oi). If this joint distribution can be accurately predicted, then the cost function can be 
evaluated, and the optimal decisions can be chosen. As we are only interested in classifying 
the entire sequence correctly, the objective consists in predicting argmaxqi P(qi|Oi) correctly. 
Predicting qi given an observed sequence Oi depends on the nature of the cost function. 
Because the HMM is a representation of the joint probability distribution P(O,Q), it can be 
applied to compute the probability of any particular qi given any particular Oi: P(qi|Oi). 
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Hence, for the cost function L(q’i,qi), the optimal prediction is given by Eq.3. However, as the 
length T of the sequences can be very long, the direct evaluation of this equation requires 
O(NT) probability evaluations (where N is the number of labels) can be impractical. As the 
cost function depends on the entire sequence, this computation can be performed in O(N2L) 
time. In this case, finding the q’i with the highest probability consists in computing: 
 

   q’i = argmaxqi P(qi|Oi)   (Eq.4) 
 
This expression can be computed by means of the Viterbi algorithm [14], [15]. This dynamic 
programming computes, for each class label l and each time step t, the probability of the most 
likely path starting at time 0 end ending at time t with class l. When the algorithm reaches the 
end of the sequence, it has computed the most likely path from time 0 to time ti and its 
probability. 
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5. Experimentation 

5.1. Performance Objectives and Evaluation Criteria 
The different directions we experiment are depicted in Fig 5.1 that defines a space that we call 
the experimental space. This space suggests three possible deviations from a study set. A 
study set is a well-defined environment, specifying the topologies we are considering, their 
sizes, and from where we are observing them.  In the following subsections, we explain in 
details how we use the various directions depicted in Fig. 5.1 to evaluate our model. 
 

 
Figure 5.1: Different model experimentation directions 

 

5.2. Methodology: Scenarios and Tools 

5.2.1. Topologies 
To evaluate our decision tree model, we define topologies used in the evaluation process, in 
order to explore a number of scenarios and infer information on the model quality. 
 
We define two types of topologies: theoretical and realistic, each of them being a network 
interconnecting ASes (limiting to a single router per AS) through BGP.  
 
In the following, we refer to d as the prefix to be announced and withdrawn. We also refer to 
listeners as the routers collecting BGP UPDATE message. 
 
Theoretical topologies are defined by mathematical attributes. They all depend on a scale 
factor n: the larger n, the larger the topologies in terms of ASes number.  
 
In the subsequent figures, we define: 

•  to be a peer relationship between AS0 and AS1. 

•  to be a provider to customer relationship. The provider and customer 
being respectively AS0 and AS1. 

•  to be a core AS. 

•  to be a stub AS. 

•  to be other AS. 
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The AS announcing prefix d is called the announcer and sets the advertised prefix origin to its 
router identifier. 
 
We define two theoretical topologies: 
 

• n-nodes clique, n ASes are in a full mesh, so 
that any two different ASes are neighbors. 
Route selection is based on the shortest AS-
path. After a single prefix withdrawal, each 
router can potentially enumerate a large number 
of alternate paths to the origin. 

 
• n-nodes p-clique, For all ASi with i ≤ n, we 

chose AS0 to be considered as a provider 
network, while all other ASes are considered as 
peer networks. Peers pass on route 
advertisements learned from their provider, AS0, 
to all other peers. 

 
 
The Simula Research Laboratory [10] define a baseline model for ASes realistic topologies, 
following several properties of today's Internet topology such as hierarchical structure, power-
law degree distribution, strong clustering as well as a constant average path length. 
 
From this model, they propose different deviations to be compared with the baseline model 
such as: 

• Dense core: multi-homing in the core of the network is much stronger 
• Dense edge: edge ASes (Tier-3) have a higher multi-homing degree  
• Strong core peering: core ASes (Tier-1) share more peering links 
• Strong edge peering: edge ASes share more peering links 

 
Usually, we refer to core and stub ASes as, respectively, ASes with no provider belonging to 
Tier-1 (T1) and the rest. However, we observe that 10,000 ASes topologies contain only, on 
average, six core ASes. We, therefore, choose to pick the core ASes into the first 10% of all 
ASes. Those 10% ASes always contains all T1 ASes, but also Tier-2 (T2). 
 
For stub ASes, we select only 50% of All ASes, to reduce the number of real stub ASes. All 
those ASes belong to Tier-3 (T3). 

5.2.2. Data Generation 
To generate and observe a path exploration, we need to provoke it. Two kinds of scenarios 
have been defined, to provoke path exploration in simulated topologies:   
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• W scenario, a sequence of advertisements leading to the withdrawal of the concerned 
prefix. 

• A scenario, a sequence ending with a prefix still available. 
 
Table 5.1 summarizes the scenarios and defines times in order to get network convergence 
before a new event occurs. 
 
Data are generated using the SimBGP BGP simulator [11]. BGP UPDATE messages are then 
collected and sorted per router, and then per prefix. The number and the location of listeners 
vary and define the amount of available data to train and test our model. Each study set 
groups one or more right cuboids in the experimental space that can contain several points 
with different characteristics. 
 

Time (sec) W scenario A scenario 
10 Announce Announce 

3600 Withdraw Withdraw 
7200 - Announce 

Table 5.1: Scenarios definition 
 

5.3. Experimental Results 
First simulations on theoretical and realistic topologies show good results as most of their 
classification success rates are above 95% [1]. We do not detail those results here. However, 
in topologies giving the worst classification success rates (n-nodes p-clique, 82%), the model 
is unable to distinct precisely the outcome of a path exploration.  This is due to the fact that 
the path exploration after a withdrawal and after the announcement looks very similar in those 
topologies. 

5.3.1. Listener(s) Impact 
Routers can base their data samples on their own local collected sequence of UPDATE 
messages. They can also use other samples in order to maybe build a stronger and more 
accurate model.  
 
In this section, we look at whether it is interesting to use other information, how much it is 
needed to increase the accuracy and which is more interesting in terms of location, either core 
or stub. 
 
Fig. 5.2 and Fig. 5.3 show respectively the number of listener impact in the core ASes and in 
the stub ASes. These simulations are done on the realistic topologies. 
 
As a first observation, as expected, we note that increasing the number of information 
increases the average model performance. The location of the listeners (either stub or core) 
has only an impact on the performance when more than 1000 listeners are used. After this 
point, performance of stub listeners does not increase, as stub listeners have less information 
compared to core listeners.  
 
To obtain good performance, based on these simulations on realistic topologies, one needs to 
use more than 200 routers information. This seems difficult to implement in the real world. 
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Figure 5.2: Impact of the number of listeners on model performance when listeners are fist chosen among 

core ASes. 
 

 
Figure 5.3: Impact of the number of listeners on model performance when listeners are first chosen among 

stub ASes. 
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We now evaluate the listeners location. We are interested by the influence of listeners location 
on the model performance. In the following we give results in terms of performances of the 
models. Simulations are performed 25 times, the tables giving the mean, the minimum and the 
maximum performance on those 25 runs. 
 

• Training set with samples from core ASes 
o Test set with samples from core ASes: 

 
 Mean Min Max 
Train 93.12% 92.88% 93.34% 
Test 92.91% 92.71% 93.1% 

 
o Test set with samples from stub ASes: 

 
 Mean Min Max 
Train 93.09% 92.84% 93.34% 
Test 91.93% 89.9% 93.92% 

 
• Training set with samples from stub ASes: 

o Test set with samples from core ASes: 
 
 Mean Min Max 
Train 95.59% 95.33% 95.9% 
Test 89.3% 88.2% 89.77% 

 
o Test set with samples from stub ASes: 

 
 Mean Min Max 
Train 95.47% 95.2ç% 95.42% 
Test 95.28% 95.06% 95.42% 

 
Those results show that using the model in the same environment as the one it was built in 
gives the best classification performance. The best performance for a stub AS is obtained with 
a model learnt in other stub ASes, while the best performance for a core AS is obtained using 
a model learnt with samples from other core ASes. We also observe that samples from core 
ASes generalize more to samples from stub ASes than the opposite. 

5.3.2. Changing Environment 
In this section, we evaluate the impact of small modifications to topologies on the model 
performance. The idea of the simulation is the following: from a training set composed of all 
instances collected in all realistic topologies except one we built a model. We, then, test the 
model on the latter. Plotted results can be found in [1]. 
 
The extracted observations are the following: 

• We obtain better performances with realistic topologies than with theoretical ones. It 
looks like models being built on those topologies generalize better for other topologies 
of the same kind. 

• Baseline and strong-core peering topologies offer the best test performance, indicating 
that those topologies are well decided thanks to our model. 



FP7-ICT-2007-2 – ECODE Project (223936) 
 

Deliverable 3.6                                                            Page 29 of 34 

• Learning our model on all theoretical topologies but the p-clique one does not provide 
good results when testing this model on p-clique topologies. 

 
We are also interested in the accuracy of the learning when a model is placed in a completely 
different environment. Mixing all topologies, all sizes together and listeners both at core and 
stub ASes, we build one study set containing theoretical topologies, and one for realistic ones. 
Results are: 
 
 Test at realistic Test at theoretical 
Training at realistic 95.62% 50.09% 
Training at theoretical 69.53% 96.41% 

 
These results show that it is not a good idea to mix tree learnt in realistic topologies for 
theoretical ones, and vice-versa. Therefore, the model is not able to abstract enough from 
topologies. It means, that implementing it on the real Internet could need some learning time, 
as we cannot use simulated tree, to abstract its model. 

5.4. Future Work 
 
Future work will be conducted along the following directions: 
 
1. Include Explicit State Duration Density: in a Markov chain, the (discrete) probability 
density function of duration in state i is an exponential function. Thus, in conventional 
HMMs, the inherent duration probability density pi(d) associated with state qi, with self 
transition coefficient aii, that is, the probability of d consecutive observations in state qi, is an 
exponential function. Such function is inappropriate as the BGP UPDATE message 
exchanges is governed by the MRAI timer that regulates by rate limiting (in fact introduces a 
temporal correlation) exchange BGP UPDATEs. However, there is a need to associate an 
explicitly model duration density in an analytic form to each state. The differences between 
HMMs without and with explicit duration density is that in the former case, the states have 
exponential duration densities based on self-transition coefficients whereas in the latter case, 
the self-transition coefficients are set to zero, and an explicit duration density is specified. In 
the latter case, a transition is made only after the appropriate number of observations occurred 
in the state (as specified by the duration density).  
 
2.  Explorationless withdraws: not all withdraws shall be considered as part of a state 
sequence leading to a path exploration hit. Indeed, the HMM shall account that only W(A0) is a 
trigger for exploration hit, withdraws of intermediate states associated to announcements A1, 
…, Am occurring before W(A0) shall not be considered part of an exploration sequence. 
Taking this effect into account would lead to introduce a new state in our model. 
 
3. HMM structure: offers a limited model of the true process producing the data. Part of the 
problem stems from the Markov property as any relationship between two separated q values 
(q1 and q4) must be communicated via the intervening q's, i.e., q3 and q2. A first-order Markov 
model, i.e., where P(qt) only depends on qt−1, cannot in general capture these kinds of 
relationships. The second issue with the HMM model is that it generates each Ot only from the 
corresponding qt. Several directions have been explored in the scientific literature to 
overcome the limitations of the HMM: Maximum Entropy Markov models (MEMMs), Input-
Output HMMs (IOHMMs), and conditional random fields (CRFs). All of these are 
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conditional models that represent P(Q|O) rather than the joint probability distribution P(O,Q). 
They do not try to explain how the observation sequences O are generated but instead try to 
predict the q values given the observation sequences. This permits them to use arbitrary 
features of the observations including global features, features describing non-local 
interactions, and sliding windows. Nevertheless, MEMM and IOHMM models suffer from the 
so-called label bias problem (note that HMM does not suffer from the label-bias problem). 
Conditional Random Field [16] overcomes the label bias problem. In CRF, the relationship 
among adjacent pairs (qt−1, qt) is modelled as a Markov Random Field conditioned on the 
observation sequences (used as input), i.e., the influence between adjacent q values is 
determined by the input. Hence, we will consider CRF to determine if we can reduce the error 
rate observed with HMMs.  
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6. Recommendation for integration into common 
ECODE architecture  

  
After exposing a summary of the ECODE common architecture; we explain the way the 
procedures and the information exchanges they involve, as introduced by this document, fit 
within the ECODE common architecture described in Deliverable D2.1.  
 
A standard router comprises a forwarding engine (as part of its forwarding plane) and a 
routing engine (as part of its control plane). The forwarding engine includes a packet 
processor and a Forwarding Information Base (FIB). The routing engine includes a routing 
information processor and Routing Information Base (RIB). The RIB stores the routes and (in 
some cases) the metrics associated with those routes to particular network destination 
prefixes. This information contains the topology of the network immediately around the 
router. The FIB is used to find the proper interface to which the input interface should send a 
packet to be transmitted by the router. The FIB is constructed based on the RIB and according 
to policies defined by the operator. It is optimized for fast lookup of destination addresses.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6.1: ECODE Common Architecture 
 
The ECODE architecture introduces in addition to the forwarding, and routing engines:  
 

� The Machine Learning Engine (MLE), part of the control plane, aims at processing by 
means of learning methods, the input from the network (obtained via forwarding and 
control components) to subsequently decide on forwarding and routing execution. The 
MLE provides the means to propagate the corresponding decisions to the routing and 
forwarding engines. The MLE comprises four different functional components: the 
Translator (syntax function), the Representation (semantic function), the Processing 

KIB

LM

Di
st

rib
ut

io
n

Processing

Re
pr

es
en

ta
tio

n

CR

CF

RF

Routing engine

Forwarding plane

Tr
an

sla
to

r

RIB Processing

ProcessingFIB

Control plane

MP_1

MP_n

Forwarding Engine

Monitoring Engine

CM

I/O

I/O

MP = Monitoring points

Machine Learning Engine

Flow direction

(Optional) pre-processing

OIB

RLRL

KIBKIB

LMLM

Di
st

rib
ut

io
n

Processing

Re
pr

es
en

ta
tio

n

CR

CF

RF

Routing engine

Forwarding plane

Tr
an

sla
to

r

RIBRIB Processing

ProcessingFIBFIB

Control plane

MP_1

MP_n

Forwarding Engine

Monitoring Engine

CM

I/O

I/O

MP = Monitoring points

Machine Learning Engine

Flow direction

(Optional) pre-processing

OIBOIB

RLRL



FP7-ICT-2007-2 – ECODE Project (223936) 
 

Deliverable 3.6                                                            Page 32 of 34 

(learner and performer and associated register), and the Distribution. The MLE 
includes also the following data structures: 

o The Knowledge Information Base (KIB): stores learned models and (past) 
decisions. Both constitute the so-called prior knowledge. 

o The Observation Information Base (OIB) stores bounded sequences of 
observations that can be accessed by means of the Register (RL) or loaded (on-
demand) by the Processor. 

o The Learning Methods (LM) base: stores the learning algorithms  
The interaction between the various engines is performed through dedicated interfaces: 

1. RF (for Routing – Forwarding): through this interface, the routing and 
forwarding engines can communicate with each other and exchange 
information if requires. 

2. CR (for Cognitive – Routing): through this interface, the MLE may retrieve data 
from the routing engine and communicate to the routing engine the decision it 
takes. 

3. CF (for Cognitive – Forwarding): similarly to the CR, the MLE may retrieve 
data from the forwarding engine and communicate to the forwarding engine the 
decision it takes. 

4. CM (for Cognitive - Monitoring): through this interface, the MLE may retrieve 
path performance information from the ME.  

Monitoring, routing, and/or forwarding engines provide raw and/or pre-processed data 
to the Machine Learning Engine (MLE) through the CM, CR, and CF interface, 
respectively. The MLE takes decisions and directs them to the routing, forwarding, and 
monitoring engines.   

 
� The Monitoring Engine (ME): part of the forwarding plane, its description can be 

found in Deliverable D2.1 (Section 5.3).  
 
In this use case, the ME is not involved in the mechanisms specified in this document, neither 
is the FE. Processing of incoming BGP related information is limited to the MLE. More 
precisely, the data sent from the RE to the MLE comprises i) temporal information: 
timestamp, and optionally, the inter-arrival time (IAT) between the previous and current BGP 
UPDATE message, and ii) spatial information extracted from the BGP UPDATE message 
itself: <Address Prefix, AS-Path, [AS originator], Peer>. The Peer attribute identifies the BGP 
speaker from which the BGP UPDATE message is received. The strings exchange from the 
RE to the MLE comprise are thus of the form: (<Time, [IAT]>; <Address Prefix, AS-Path, 
[AS originator], Peer>). 
 
The MLE builds up its model using this spatio-temporal data: data is first processed by the 
translator (format translation) and then semantically processed by the representation module 
before being processed as observations by the MLE processor. The output of the learned 
model comprises the sequence of announcements identified as associated to the detected path 
exploration event and the replacing announcement for that destination prefix. This 
information is directed to the RE. At the RE, it is used by the local BGP route selection 
process to determine which announcements should be eliminated after the execution of this 
process and which announcements shall replace it. This output is not distributed to the 
router’s neighbours or other nodes in the system. However, the router's output (i.e., the BGP 
UPDATE messages that are propagated to its downstream neighbours) will influence the 
route selection of the BGP router's neighbour. 
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7.  Conclusion 
 
In this deliverable, we have described the research work achieved so far in the task dedicated 
to the experimentation on the technical objective 3 (TO3) addressing machine learning 
techniques for improving routing system scalability and quality. The problem addressed by 
this use case has been formalized. Then, the developed machine learning techniques, decision 
trees and Hidden Markov Model (HMM) have been presented as used to provide appropriate 
solution to this networking change. The proposed machine-learning-based algorithms are 
evaluated by off-line experimentation on representative Internet topologies. The simulated 
codes used for this purpose constitute first high-level prototypes. Finally we explain how this 
use case fits in the ECODE common architecture specified in deliverable D2.1. 
 
Detecting path exploration events, identifying path exploration announcement/withdrawal 
sequence, and anticipating BGP route selection process decision to mitigate the effects of a 
phenomenon inherently associated to the routing protocol of the Internet routing system, i.e., 
BGP, is the fundamental problem addressed by this use case. At this stage, the proposed 
solutions (i.e. machine learning algorithms and associated procedures) applied on theoretical 
and realistic topologies show good results as most of their classification success rates are 
above 95%. However, in n-nodes p-clique topologies giving the worst classification success 
rates (82%), the learned model is unable to distinct precisely the outcome of a path 
exploration. The introduction of HMM is as a mean to infer a “global” routing state from the 
observed sequence of BGP UPDATE messages. The results obtained with the HMM model 
needs to be complemented as detailed in Section 5.4 in order to prevent effects of 
explorationless withdraws. We aim also at introducing explicit state duration density as part 
of our model. 
 
The next objective is to experiment the proposed techniques on the ILAB platform by 
developing prototype codes, perform the full integration as part of the ECODE common 
architecture. When these implementations will be up and running, a second stage of tests and 
validations including performance evaluation and functionality benchmarking will be carried 
out to check whether the results promised by simulations are confirmed.     
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